3.空间几何体的直观图
(1)斜二测画法
①建立直角坐标系,在已知水平放置的平面图形中取互相垂直的OX,OY,建立直角坐标系;
②画出斜坐标系,在画直观图的纸上(平面上)画出对应的O’X’,O’Y’,使=450(或1350),它们确定的平面表示水平平面;
③画对应图形,在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y‘轴,且长度变为原来的一半;
④擦去辅助线,图画好后,要擦去X轴、Y轴及为画图添加的辅助线(虚线)。
(2)平行投影与中心投影
平行投影的投影线是互相平行的,中心投影的投影线相交于一点。
2.空间几何体的三视图
三视图是观测者从不同位置观察同一个几何体,画出的空间几何体的图形。
他具体包括:
(1)正视图:物体前后方向投影所得到的投影图;
它能反映物体的高度和长度;
(2)侧视图:物体左右方向投影所得到的投影图;
它能反映物体的高度和宽度;
(3)俯视图:物体上下方向投影所得到的投影图;
它能反映物体的长度和宽度;
1.柱、锥、台、球的结构特征
(1)柱
棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。
底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……
圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。
棱柱与圆柱统称为柱体;
(2)锥
棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。
底面是三角锥、四边锥、五边锥……的棱柱分别叫做三棱锥、四棱锥、五棱锥……
圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥;旋转轴为圆锥的轴;垂直于轴的边旋转形成的面叫做圆锥的底面;斜边旋转形成的曲面叫做圆锥的侧面。
棱锥与圆锥统称为锥体。
(3)台
棱台:用一个平行于底面的平面去截棱锥,底面和截面之间的部分叫做棱台;原棱锥的底面和截面分别叫做棱台的下底面和上底面;棱台也有侧面、侧棱、顶点。
圆台:用一个平行于底面的平面去截圆锥,底面和截面之间的部分叫做圆台;原圆锥的底面和截面分别叫做圆台的下底面和上底面;圆台也有侧面、母线、轴。
圆台和棱台统称为台体。
(4)球
以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称为球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径。
(5)组合体
由柱、锥、台、球等几何体组成的复杂的几何体叫组合体。
近几年来,立体几何高考命题形式比较稳定,题目难易适中,解答题常常立足于棱柱、棱锥和正方体位置关系的证明和夹角距离的求解,而选择题、填空题又经常研究空间几何体的几何特征和体积表面积。因此复习时我们要首先掌握好空间几何体的空间结构特征。培养好空间想能力。
预测07年高考对该讲的直接考察力度可能不大,但经常出一些创新型题目,具体预测如下:
(1)题目多出一些选择、填空题,经常出一些考察空间想象能力的试题;解答题的考察位置关系、夹角距离的载体使空间几何体,我们要想像的出其中的点线面间的位置关系;
(2)研究立体几何问题时要重视多面体的应用,才能发现隐含条件,利用隐蔽条件解题。
4.完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求);
3.通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式;
2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如:纸板)制作模型,会用斜二侧法画出它们的直观图;
1.利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;
2.怎样选择数学模型分析解决实际问题
数学应用问题形式多样,解法灵活。在应用题的各种题型中,有这样一类题型:信息由表格数据的形式给出,要求对数据进行合理的转化处理,建立数学模型,解答有关的实际问题。解答此类题型主要有如下三种方法:
(1)直接法:若由题中条件能明显确定需要用的数学模型,或题中直接给出了需要用的数学模型,则可直接代入表中的数据,问题即可获解;
(2)列式比较法:若题所涉及的是最优化方案问题,则可根据表格中的数据先列式,然后进行比较;
(3)描点观察法:若根据题设条件不能直接确定需要用哪种数学模型,则可根据表中的数据在直角坐标系中进行描点,作出散点图,然后观察这些点的位置变化情况,确定所需要用的数学模型,问题即可顺利解决。下面举例进行说明。
1.将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com