1.能画出y=sin x, y=cos x, y=tan x的图像,了解三角函数的周期性;
4.运用同角三角函数关系式化简、证明
常用的变形措施有:大角化小,切割化弦等,应用 “弦化切”的技巧,即分子、分母同除以一个不为零的,得到一个只含的教简单的三角函数式。
3.任意角的概念的意义,任意角的三角函数的定义,同角间的三角函数基本关系、诱导公式由于本重点是任意角的三角函数角的基础,因而三学习本节内容时要注意如下几点:(1)熟练地掌握常用的方法与技巧,在使用三角代换求解有关问题时要注意有关范围的限制;(2)要注意差异分析,又要活用公式,要善于瞄准解题目标进行有效的变形,其解题一般思维模式为:发现差异,寻找联系,合理转化。
只有这样才能在高考中夺得高分。三角函数的值与点在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离,那么,,。所以,三角函数是以为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故三角函数也可以看成实数为自变量的函数。
2.α、、2α之间的关系。
若α终边在第一象限则终边在第一或第三象限;2α终边在第一或第二象限或y轴正半轴。
若α终边在第二象限则终边在第一或第三象限;2α终边在第三或第四象限或y轴负半轴。
若α终边在第三象限则终边在第二或第四象限;2α终边在第一或第二象限或y轴正半轴。
若α终边在第四象限则终边在第二或第四象限;2α终边在第三或第四象限或y轴负半轴。
1.几种终边在特殊位置时对应角的集合为:
角的终边所在位置 |
角的集合 |
X轴正半轴 |
|
Y轴正半轴 |
|
X轴负半轴 |
|
Y轴负半轴 |
|
X轴 |
|
Y轴 |
|
坐标轴 |
|
题型1:象限角
例1.已知角;(1)在区间内找出所有与角有相同终边的角;(2)集合,那么两集合的关系是什么?
解析:(1)所有与角有相同终边的角可表示为:,
则令 ,
得
解得
从而或
代回或
(2)因为表示的是终边落在四个象限的平分线上的角的集合;而集合表示终边落在坐标轴或四个象限平分线上的角的集合,从而:。
点评:(1)从终边相同的角的表示入手分析问题,先表示出所有与角有相同终边的角,然后列出一个关于的不等式,找出相应的整数,代回求出所求解;(2)可对整数的奇、偶数情况展开讨论。
例2.(2001全国理,1)若sinθcosθ>0,则θ在( )
A.第一、二象限 B.第一、三象限
C.第一、四象限 D.第二、四象限
解析:答案:B;∵sinθcosθ>0,∴sinθ、cosθ同号。
当sinθ>0,cosθ>0时,θ在第一象限,当sinθ<0,cosθ<0时,θ在第三象限,因此,选B。
例3.(2001春季北京、安徽,8)若A、B是锐角△ABC的两个内角,则点P(cosB-sinA,sinB-cosA)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
答案:B
解析:∵A、B是锐角三角形的两个内角,∴A+B>90°,∴B>90°-A,∴cosB<sinA,sinB>cosA,故选B。
例4.已知“是第三象限角,则是第几象限角?
解法一:因为是第三象限角,所以,
∴,
∴当k=3m(m∈Z)时,为第一象限角;
当k= 3m+1(m∈Z)时,为第三象限角,
当k= 3m+2(m∈Z)时,为第四象限角,
故为第一、三、四象限角。
解法二:把各象限均分3等份,再从x轴的正向的上方起依次将各区域标上I、Ⅱ、Ⅲ、Ⅳ,并依次循环一周,则原来是第Ⅲ象限的符号所表示的区域即为的终边所在的区域。
由图可知,是第一、三、四象限角。
点评:已知角的范围或所在的象限,求所在的象限是常考题之一,一般解法有直接法和几何法,其中几何法具体操作如下:把各象限均分n等份,再从x轴的正向的上方起,依次将各区域标上I、Ⅱ、Ⅲ、Ⅳ,并循环一周,则原来是第几象限的符号所表示的区域即为 (n∈N*)的终边所在的区域。
题型2:三角函数定义
例5.已知角的终边过点,求的四个三角函数值。
解析:因为过点,所以,。
当;
,。
当,;。
例6.已知角的终边上一点,且,求的值。
解析:由题设知,,所以,
得,
从而,
解得或。
当时,, ;
当时,, ;
当时,, 。
题型3:诱导公式
例7.(2001全国文,1)tan300°+的值是( )
A.1+ B.1- C.-1- D.-1+
解析:答案:B tan300°+=tan(360°-60°)+=-tan60°+=1-。
例8.化简:
(1);
(2)。
解析:(1)原式;
(2)①当时,原式。
②当时,原式。
点评:关键抓住题中的整数是表示的整数倍与公式一中的整数有区别,所以必须把分成奇数和偶数两种类型,分别加以讨论。
题型4:同角三角函数的基本关系式
例9.已知,试确定使等式成立的角的集合。
解析:∵,
===。
又∵,
∴,
即得或
所以,角的集合为:或。
例10.(1)证明:;
(2)求证:。
解析:(1)分析:证明此恒等式可采取常用方法,也可以运用分析法,即要证,只要证A·D=B·C,从而将分式化为整式
证法一:右边=
=
=
证法二:要证等式,即为
只要证 2()()=
即证:
,
即1=,显然成立,
故原式得证。
点评:在进行三角函数的化简和三角恒等式的证明时,需要仔细观察题目的特征,灵活、恰当地选择公式,利用倒数关系比常规的“化切为弦”要简洁得多。(2)同角三角函数的基本关系式有三种,即平方关系、商的关系、倒数关系。
(2)证法一:由题义知,所以。
∴左边=右边。
∴原式成立。
证法二:由题义知,所以。
又∵,
∴。
证法三:由题义知,所以。
,
∴。
点评:证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边(如例5的证法一);(2)证明左右两边同等于同一个式子(如例6);(3)证明与原式等价的另一个式子成立,从而推出原式成立。
7.诱导公式
可用十个字概括为“奇变偶不变,符号看象限”。
诱导公式一:,,其中
诱导公式二: ;
诱导公式三: ;
诱导公式四:;
诱导公式五:;
|
- |
|
|
|
|
|
sin |
-sin |
sin |
-sin |
-sin |
sin |
cos |
cos |
cos |
-cos |
-cos |
cos |
cos |
sin |
(1)要化的角的形式为(为常整数);
(2)记忆方法:“函数名不变,符号看象限”;
(3)sin(kπ+α)=(-1)ksinα;cos(kπ+α)=(-1)kcosα(k∈Z);
(4);。
6.同角三角函数关系式
使用这组公式进行变形时,经常把“切”、“割”用“弦”表示,即化弦法,这是三角变换非常重要的方法。
几个常用关系式:sinα+cosα,sinα-cosα,sinα·cosα;(三式之间可以互相表示)
同理可以由sinα-cosα或sinα·cosα推出其余两式。
②. ③当时,有。
5.三角函数线
三角函数线是通过有向线段直观地表示出角的各种三角函数值的一种图示方法。利用三角函数线在解决比较三角函数值大小、解三角方程及三角不等式等问题时,十分方便。
以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆(注意:这个单位长度不一定就是1厘米或1米)。当角为第一象限角时,则其终边与单位圆必有一个交点,过点作轴交轴于点,根据三角函数的定义:;。
我们知道,指标坐标系内点的坐标与坐标轴的方向有关.当角的终边不在坐标轴时,以为始点、为终点,规定:
当线段与轴同向时,的方向为正向,且有正值;当线段与轴反向时,的方向为负向,且有正值;其中为点的横坐标.这样,无论那种情况都有
同理,当角的终边不在轴上时,以为始点、为终点,
规定:当线段与轴同向时,的方向为正向,且有正值;当线段与轴反向时,的方向为负向,且有正值;其中为点的横坐标。
这样,无论那种情况都有。像这种被看作带有方向的线段,叫做有向线段。
如上图,过点作单位圆的切线,这条切线必然平行于轴,设它与的终边交于点,请根据正切函数的定义与相似三角形的知识,借助有向线段,我们有
我们把这三条与单位圆有关的有向线段,分别叫做角的正弦线、余弦线、正切线,统称为三角函数线。
4.三角函数定义
在的终边上任取一点,它与原点的距离.过作轴的垂线,垂足为,则线段的长度为,线段的长度为.则;;。
利用单位圆定义任意角的三角函数,设是一个任意角,它的终边与单位圆交于点,那么:
(1)叫做的正弦,记做,即;
(2)叫做的余弦,记做,即;
(3)叫做的正切,记做,即。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com