0  430515  430523  430529  430533  430539  430541  430545  430551  430553  430559  430565  430569  430571  430575  430581  430583  430589  430593  430595  430599  430601  430605  430607  430609  430610  430611  430613  430614  430615  430617  430619  430623  430625  430629  430631  430635  430641  430643  430649  430653  430655  430659  430665  430671  430673  430679  430683  430685  430691  430695  430701  430709  447090 

5.三角等式的证明

(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”;

(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。

试题详情

4.三角函数的求值类型有三类

(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;

(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;

(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。

试题详情

3.三角函数式的化简

常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。

(1)降幂公式

(2)辅助角公式

试题详情

2.二倍角公式

试题详情

1.两角和与差的三角函数

试题详情

从近几年的高考考察的方向来看,这部分的高考题以选择、解答题出现的机会较多,有时候也以填空题的形式出现,它们经常与三角函数的性质、解三角形及向量联合考察,主要题型有三角函数求值,通过三角式的变换研究三角函数的性质。

本讲内容是高考复习的重点之一,三角函数的化简、求值及三角恒等式的证明是三角变换的基本问题。历年高考中,在考察三角公式的掌握和运用的同时,还注重考察思维的灵活性和发散性,以及观察能力、运算及观察能力、运算推理能力和综合分析能力。

试题详情

3.能运用上述公式进行简单的恒等变换(包括引导导出积化和差、和差化积、半角公式,但不要求记忆)。

试题详情

2.能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系;

试题详情

1.经历用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用;

试题详情

7.判断y=-Asin(ωx+)(ω>0)的单调区间,只需求y=Asin(ωx+)的相反区间即可,一般常用数形结合而求y=Asin(-ωx+)(-ω<0=单调区间时,则需要先将x的系数变为正的,再设法求之。

试题详情


同步练习册答案