0  430533  430541  430547  430551  430557  430559  430563  430569  430571  430577  430583  430587  430589  430593  430599  430601  430607  430611  430613  430617  430619  430623  430625  430627  430628  430629  430631  430632  430633  430635  430637  430641  430643  430647  430649  430653  430659  430661  430667  430671  430673  430677  430683  430689  430691  430697  430701  430703  430709  430713  430719  430727  447090 

2.两个基本原理

(1)分类计数原理中的分类;

(2)分步计数原理中的分步;

正确地分类与分步是学好这一章的关键。

试题详情

1.排列、组合、二项式知识相互关系表

试题详情

本部分内容主要包括分类计数原理、分步计数原理、排列与组合、二项式定理三部分;考查内容:(1)两个原理;(2)排列、组合的概念,排列数和组合数公式,排列和组合的应用;(3)二项式定理,二项展开式的通项公式,二项式系数及二项式系数和。

排列、组合不仅是高中数学的重点内容,而且在实际中有广泛的应用,因此新高考会有题目涉及;二项式定理是高中数学的重点内容,也是高考每年必考内容,新高考会继续考察。

考察形式:单独的考题会以选择题、填空题的形式出现,属于中低难度的题目,排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目;预测2007年高考本部分内容一定会有题目涉及,出现选择填空的可能性较大,与概率相结合的解答题出现的可能性较大。

试题详情

3.二项式定理

能用计数原理证明二项式定理; 会用二项式定理解决与二项展开式有关的简单问题。

试题详情

2.排列与组合

通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题;

试题详情

1.分类加法计数原理、分步乘法计数原理

通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题;

试题详情

2.考生应立足基础知识和基本方法的复习,以课本题目为主,以熟练技能,巩固概念为目标。

试题详情

1.本讲内容在高考中以填空题和解答题为主

主要考查:

(1)函数的极限;

(2)导数在研究函数的性质及在解决实际问题中的应用;

(3)计算曲边图形的面积和旋转体的体积。

试题详情

6.定积分

(1)概念

设函数f(x)在区间[ab]上连续,用分点ax0<x1<…<xi-1<xi<…xnb把区间[ab]等分成n个小区间,在每个小区间[xi-1xi]上取任一点ξi(i=1,2,…n)作和式Ini)△x(其中△x为小区间长度),把n→∞即△x→0时,和式In的极限叫做函数f(x)在区间[ab]上的定积分,记作:,即i)△x

这里,ab分别叫做积分下限与积分上限,区间[ab]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式。

基本的积分公式:C+C(m∈Q, m≠-1);dx=ln+C+C;+C=sinx+C=-cosx+C(表中C均为常数)。

(2)定积分的性质

(k为常数);

(其中acb

(3)定积分求曲边梯形面积

由三条直线xaxb(a<b),x轴及一条曲线yf(x)(f(x)≥0)围成的曲边梯的面积

如果图形由曲线y1f1(x),y2f2(x)(不妨设f1(x)≥f2(x)≥0),及直线xaxb(a<b)围成,那么所求图形的面积SS曲边梯形AMNBS曲边梯形DMNC

试题详情


同步练习册答案