11、(重庆市2009年)25.某电视机生产厂家去年销往农村的某品牌电视机每台的售价(元)与月份之间满足函数关系,去年的月销售量(万台)与月份之间成一次函数关系,其中两个月的销售情况如下表:
月份 |
1月 |
5月 |
销售量 |
3.9万台 |
4.3万台 |
(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?
(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了,且每月的销售量都比去年12月份下降了。国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴。受此政策的影响,今年3月份至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台。若今年3至5月份国家对这种电视机的销售共给予财政补贴936万元,求的值(保留一位小数)
解: (1)p=0.1x+3.8 月销售金额w=py=-5(x-7)+10125
故7月销售金额最大,最大值是10125万元
(2)列方程得
2000(1-m%)[5(1-1.5 m%)+1.5]×3×13%=936
化简得 3m-560m+21200=0 解得 m= m=
因为m>1舍去,所以m=52.78≈52.8
(参考数据:,,,)
10、(重庆市2009年)25.某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。
(1)请建立销售价格y(元)与周次x之间的函数关系;
(2)若该品牌童装于进货当周售完,且这种童装每件进价z(元)与周次x之间的关系为, 1≤ x ≤11,且x为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少?
9、(内江市二○○九年)6.(10分)我市部分地区近年出现持续干旱现象,为确保生产生活用水,某村决定由村里提供一点,村民捐一点的办法筹集资金维护和新建一批储水池.该村共有243户村民,准备维护和新建的储水池共有20个,费用和可供使用的户数及用地情况如下表:
储水池 |
费用(万元/个) |
可供使用的户数(户/个) |
占地面积(m2/个) |
新建 |
4 |
5 |
4 |
维护 |
3 |
18 |
6 |
已知可支配使用土地面积为106m2,若新建储水池个,新建和维护的总费用为万元.
(1)求与之间的函数关系;
(2)满足要求的方案各有几种;
(3)若平均每户捐2000元时,村里出资最多和最少分别是多少?
8、(成都市二0 0九年)(共8分)26.某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=-2x+80(1≤x≤30,且x为整数);又知前20天的销售价格 (元/件)与销售时间x(天)之间有如下关系: (1≤x≤20,且x为整数),后10天的销售价格 (元/件)与销售时间x(天)之间有如下关系:=45(21≤x≤30,且x为整数).
(1)试写出该商店前20天的日销售利润(元)和后l0天的日销售利润(元)分别与销售时间x(天)之间的函数关系式;
(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润.
注:销售利润=销售收入一购进成本.
7、(2009年宜宾市)23.(本题满分8分) 从2008年12月1日起,国家开始实施家电下乡计划,国家将按照农民购买家电金额的13%予以财政补贴.某商场计划购进A、B两种型号的彩电共l00台,已知该商场所筹购买的资金不少于222000元,但不超过222800元.国家规定这两种型号彩电的进价和售价如下表:
型号 |
A |
B |
进价(元/台) |
2000 |
2400 |
售价(元/台) |
2500 |
3000 |
(1)农民购买哪种型号的彩电获得的政府补贴要多一些?请说明理由;
(2)该商场购进这两种型号的彩电共有哪些方案?其中哪种购迸方案获得的利润最大?请说明理由.(注:利润=售价一进价)
6、(遂宁市2009年)23.某校原有600张旧课桌急需维修,经过A、B、C三个工程队的竞标得知,A、B的工作效率相同,且都为C队的2倍,若由一个工程队单独完成,C队比A 队要多用10天.学校决定由三个工程队一齐施工,要求至多6天完成维修任务.三个工程队都按原来的工作效率施工2天时,学校又清理出需要维修的课桌360张,为了不超过6天时限,工程队决定从第3天开始,各自都提高工作效率,A、B队提高的工作效率仍然都是C队提高的2倍.这样他们至少还需要3天才能成整个维修任务.
⑴求工程队A原来平均每天维修课桌的张数;
⑵求工程队A提高工作效率后平均每天多维修课桌张数的取值范围.
解:⑴设C队原来平均每天维修课桌x张,
根据题意得:
解这个方程得:x=30
经检验x=30是原方程的根且符合题意,2x=60
答:A队原来平均每天维修课桌60张.
⑵设C队提高工效后平均每天多维修课桌x张,施工2天时,已维修(60+60+30)×2=300(张),从第3天起还需维修的张数应为(300+360)=600(张)
根据题意得:
3(2x+2x+x+150)≤660≤4(2x+2x+x+150)
解这个不等式组得::3≤x≤14
∴6≤2x≤28
答:A队提高工效后平均每天多维修的课桌张数的取值范围是:6≤2x≤28
5、(浙江省2009年湖州市)22.(本小题10分)随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.
(1) 若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?
(2) 为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.
解:(1)设家庭轿车拥有量的年平均增长率为,则:
,……………2分
解得:%,(不合题意,舍去),……………2分
.……………1分
答:该小区到2009年底家庭轿车将达到125辆.……………1分
(2)设该小区可建室内车位个,露天车位个,则:
……………2分
由①得:=150-5代入②得:,
是正整数,=20或21,
当时,当时.……………2分
方案一:建室内车位20个,露天车位50个;方案二:室内车位21个,露天车位45个.
4、(浙江省2009年丽水市)22.绿谷商场“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:
类别 |
冰箱 |
彩电 |
进价(元/台) |
2 320 |
1 900 |
售价(元/台) |
2 420 |
1 980 |
(1) 按国家政策,农民购买“家电下乡”产品可享受售价13%的政府补贴.农民田大伯到该商场购买
了冰箱、彩电各一台,可以享受多少元的政府补贴?
(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台, 且冰箱的数量不少于彩电数量的.
①请你帮助该商场设计相应的进货方案;
②哪种进货方案商场获得利润最大(利润=售价进价),最大利润是多少?
解:(1) (2 420+1 980)×13%=572 …………(3分)
答: 可以享受政府572元的补贴.
(2) ①设冰箱采购x台,则彩电采购(40-x)台,根据题意,得 ………(1分)
2 320x+1 900(40-x)≤85 000,
x≥(40-x).
解不等式组,得≤x≤ ……………(3分)
∵x为正整数.
∴x= 19,20,21.
∴该商场共有3种进货方案:
方案一:冰箱购买19台,彩电购买21台
方案二:冰箱购买20台,彩电购买20台;
方案三:冰箱购买21台,彩电购买19台. ………(1分)
②设商场获得总利润y元,根据题意,得
y=(2 420 - 2 320)x+(1 980 -1 900)(40-x)=20x+3 200
∵20>0, ∴y随x的增大而增大
∴当x=21时,y最大=20×21+3 200=3 620
答:方案三商场获得利润最大,最大利润是3 620元 ………(2分)
3、(2009年浙江省宁波市)25.2009年4月7日,国务院公布了《医药卫生体制改革近期重点实施方案(2009-2011)》,某市政府决定2009年投入6000万元用于改善医疗卫生服务,比例2008年增加了1250万元.投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),预计2009年投入“需方”的资金将比2008年提高30%,投入“供方”的资金将比2008年提高20%.
(1)该市政府2008年投入改善医疗卫生服务的资金是多少万元?
(2)该市政府2009年投入“需方”和“供方”的资金是多少万元?
(3)该市政府预计2011年将有7260万元投入改善医疗卫生服务,若从2009-2011年每年的资金投入按相同的增长率递增,求2009-2011年的年增长率
解:(1)该市政府2008年投入改善医疗服务的资金是:
(万元)······················································································· 2分
(2)设市政府2008年投入“需方”万元,投入“供方”万元,
由题意得
解得············································································································ 4分
2009年投入“需方”资金为(万元),
2009年投入“供方”资金为(万元).
答:该市政府2009年投入“需方”3900万元,投入“供方”2100万元.······················ 6分
(3)设年增长率为,由题意得
,································································································· 8分
解得,(不合实际,舍去)
答:从2009~2011年的年增长率是10%.···································································· 10分
1、(江苏省2009年)27.(本题满分12分)某加油站五月份营销一种油品的销售利润(万元)与销售量(万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)
请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:
(1)求销售量为多少时,销售利润为4万元;
(2)分别求出线段AB与BC所对应的函数关系式;
(3)我们把销售每升油所获得的利润称为利润率,那么,在OA、AB、BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)
解法一:(1)根据题意,当销售利润为4万元,销售量为(万升).
答:销售量为4万升时销售利润为4万元.························································· (3分)
(2)点的坐标为,从13日到15日利润为(万元),
所以销售量为(万升),所以点的坐标为.
设线段所对应的函数关系式为,则解得
线段所对应的函数关系式为.······························· (6分)
从15日到31日销售5万升,利润为(万元).
本月销售该油品的利润为(万元),所以点的坐标为.
设线段所对应的函数关系式为,则解得
所以线段所对应的函数关系式为.································· (9分)
(3)线段.·································································································· (12分)
解法二:(1)根据题意,线段所对应的函数关系式为,即.
当时,.
答:销售量为4万升时,销售利润为4万元.························································· (3分)
(2)根据题意,线段对应的函数关系式为,
即.················································································ (6分)
把代入,得,所以点的坐标为.
截止到15日进油时的库存量为(万升).
当销售量大于5万升时,即线段所对应的销售关系中,
每升油的成本价(元).
所以,线段所对应的函数关系为
.···································· (9分)
(3)线段. (12分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com