0  431243  431251  431257  431261  431267  431269  431273  431279  431281  431287  431293  431297  431299  431303  431309  431311  431317  431321  431323  431327  431329  431333  431335  431337  431338  431339  431341  431342  431343  431345  431347  431351  431353  431357  431359  431363  431369  431371  431377  431381  431383  431387  431393  431399  431401  431407  431411  431413  431419  431423  431429  431437  447090 

例1. 如图,已知四棱锥的底面是直角梯形,,侧面底面

(1)是否相互垂直,请证明你的结论;

(2)求二面角的大小;

(3)求证:平面⊥平面

  解:(1)相互垂直.证明如下:

的中点,连结,交于点;连结

,∴.又∵平面⊥平面

平面∩平面,∴⊥平面

在梯形中,可得

,   

,  ∴

(2)连结, 

⊥平面,可得, 

为二面角的平面角,

,则在中,

  ∴二面角

(3)取的中点,连结,由题意知:平面⊥平面

则同“(1)”可得平面

的中点,连结,则由

,得四边形为平行四边形.  ∴

⊥平面.∴平面⊥平面

  解答二:

的中点,由侧面⊥底面

是等边三角形,

⊥底面

为原点,以所在直线为轴,

过点平行的直线为轴,

建立如图所示的空间直角坐标系

,则在直角梯形中,

在等边三角形中,.∴

(1)相互垂直.证明如下:∵

(2)连结,设相交于点;连结

又∵在平面内的射影,

为二面角的平面角.

中,

中,

∴二面角

(3)取的中点,连结,则的坐标为

⊥平面.  ∴平面⊥平面

小结:三垂线定理是求二面角的平面角的又一常用方法.

例2.在的二面角中,,已知的距离分别是,且的射影分别为,求:(1)的长度;(2)和棱所成的角.

例3.棱长为4的正方体中,是正方形的中心,点在棱上,且

    (Ⅰ)求直线与平面所成的角的大小(结果用反三角函数值表示);

    (Ⅱ)设点在平面上的射影是,求证:

例4. 在三棱锥中,是边长为的正三角形,平面平面分别是的中点.

(1)证明;              

(2)求二面角的大小;

(3)求点到平面的距离.

例5. 如图,直四棱柱ABCDA1B1C1D1的侧棱AA1的长为a,底面ABCD是边长AB=2aBC=a的矩形,又EC1D1的中点;

(1)CEBD1所成角的余弦值;

(2)求证:平面BCE⊥平面BDE

(3)求二面角BDC1C的平面角的大小

试题详情

4.在四面体中,两两垂直,且中点,异面直线所成的角为,则二面角的大小为          

试题详情

3.对于平面几何中的命题:“如果两个角的两边分别对应垂直,那么这两个角相等或互补”,在立体几何中,类比上述的命题,可以得到命题:                

               ,这个命题的真假性是      

试题详情

2.已知分别是正方体的棱的中点,则截面与底面所成二面角的正弦值是                                     (  )

                        

            

试题详情

1.二面角内有一点,若到平面的距离分别是,且在平面的内的射影的距离为,则二面角的度数是                  (  )

                               

试题详情

6.求二面角平面角大小的一般方法:                     

试题详情

5.二面角的平面角:                             

试题详情

4.二面角的概念:                             

试题详情

3.最小角定理:                                

试题详情

2.直线与平面所成角

    (1)直线与平面平行或直线在平面内,则    

    (2)直线与平面垂直,则    

    (3)直线是平面的斜线,则定义为                      

试题详情


同步练习册答案