0  434502  434510  434516  434520  434526  434528  434532  434538  434540  434546  434552  434556  434558  434562  434568  434570  434576  434580  434582  434586  434588  434592  434594  434596  434597  434598  434600  434601  434602  434604  434606  434610  434612  434616  434618  434622  434628  434630  434636  434640  434642  434646  434652  434658  434660  434666  434670  434672  434678  434682  434688  434696  447090 

3.求事件发生的概率的处理方法和技巧

⑴ 解决等可能性事件的概率问题的关键是:正确求出基本事件总数和事件A包含的基本事件数,这就需要有较好的排列、组合知识.

⑵ 要注意恰有k次发生和指定的k次发生的关系,对独立重复试验来说,前者的概率为Cpk(1―p)n―k,后者的概率为pk(1―p)n―k.

(3)计算古典概型问题的关键是怎样把一个事件划分为基本事件的和的形式,以便准确计算事件A所包含的基本事件的个数和总的基本事件个数;计算几何概型问题的关键是怎样把具体问题(如时间问题等)转化为相应类型的几何概型问题,及准确计算事件A所包含的基本事件对应的区域的长度、面积或体积.

(4)在古典概型问题中,有时需要注意区分试验过程是有序还是无序;在几何概型问题中需注意先判断基本事件是否是“等可能”的.

(5)几何概型中,线段的端点、图形的边框是否包含在事件之内不影响所求结果.

试题详情

2.二项定理问题的处理方法和技巧

⑴ 运用二项式定理一定要牢记通项Tr+1 =Can-rbr,注意(a +b)n与(b+a)n虽然相同,但具体到它们展开式的某一项时是不相同的,我们一定要注意顺序问题.另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C,而后者是字母外的部分.

⑵ 对于二项式系数问题,应注意以下几点:

①求二项式所有项的系数和,可采用“特殊值取代法”,通常令字母变量的值为1;

②关于组合恒等式的证明,常采用“构造法”--构造函数或构造同一问题的两种算法;

③证明不等式时,应注意运用放缩法.

⑶ 求二项展开式中指定的项,通常是先根据已知条件求r,再求Tr+1,有时还需先求n,再求r,才能求出Tr+1.

⑷ 有些三项展开式问题可以变形为二项式问题加以解决;有时也可以通过组合解决,但要注意分类清楚,不重不漏.

⑸ 对于二项式系数问题,首先要熟记二项式系数的性质,其次要掌握赋值法,赋值法是解决二项式系数问题的一个重要手段.

⑹ 近似计算要首先观察精确度,然后选取展开式中若干项.

⑺ 用二项式定理证明整除问题,一般将被除式变为有关除式的二项式的形式再展开,常采用“配凑法”“消去法”配合整除的有关知识来解决.

试题详情

1.排列组合应用题的处理方法和策略

⑴ 使用分类计数原理还是分步计数原理要根据我们完成某件事情时采取的方式而定,分类来完成这件事情时用分类计数原理,分步骤来完成这件事情时用分步计数原理.怎样确定是分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给事件,而“分步骤”必须把各步骤均完成才能完成所给事情.所以准确理解两个原理的关键在于明确:分类计数原理强调完成一件事情的几类办法互不干扰,彼此之间交集为空集,并集为全集,不论哪一类办法中的哪一种方法都能单独完成事件;分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成事件,步与步之间互不影响,即前一步用什么方法不影响后一步采取什么方法.

⑵ 排列与组合定义相近,它们的区别在于是否与顺序有关.

⑶ 复杂的排列问题常常通过试验、画简图、小数字简化等手段使问题直观化,从而寻求解题途径,由于结果的正确性难以直接检验,因而常需要用不同的方法求解来获得检验.

⑷ 按元素的性质进行分类、按事件发生的连续过程分步,是处理组合问题的基本思想方法,要注意题设中“至少”“至多”等限制词的意义.

⑸ 处理排列组合的综合性问题,一般思想方法是先选元素(组合),后排列,按元素的性质“分类”和按事件发生的连续过程“分步”,始终是处理排列、组合问题的基本方法和原理,通过解题训练要注意积累分类和分步的基本技能.

⑹ 在解决排列组合综合性问题时,必须深刻理解排列与组合的概念,能够熟练确定--问题是排列问题还是组合问题,牢记排列数、组合数计算公式与组合数性质.容易产生的错误是重复和遗漏计数.

常见的解题策略有以下几种:

①特殊元素优先安排的策略;

②合理分类与准确分步的策略;

③排列、组合混合问题先选后排的策略;

④正难则反、等价转化的策略;

⑤相邻问题捆绑处理的策略;

⑥不相邻问题插空处理的策略;

⑦定序问题除法处理的策略;

⑧分排问题直排处理的策略;

⑨“小集团”排列问题中先整体后局部的策略;

⑩构造模型的策略.

试题详情

2、求二项展开式中的多个系数的和:此类问题多用赋值法;要注意二项式系数与项的系数的区别;

[命题规律]

历年高考二项式定理的试题以客观题的形式出现,多为课本例题、习题迁移的改编题,难度不大,重点考查运用二项式定理去解决问题的能力和逻辑划分、化归转化等思想方法。为此,只要我们把握住二项式定理及其系数性质,会把实际问题化归为数学模型问题或方程问题去解决,就可顺利获解。

例4、(2008安徽理)设中奇数的个数为(   )

A.2           B.3        C.4           D.5

解:由题知,逐个验证知,其它为偶数,选A。

例5、(2008上海理)12.组合数C(nr≥1,nr∈Z)恒等于(   )

  A.C      B.(n+1)(r+1)C     C.nr C       D.C

解:由.

例6、(2008浙江文)(6)在的展开式中,含的项的系数是

   (A)-15    (B)85     (C)-120    (D)274

解:本题可通过选括号(即5个括号中4个提供,其余1个提供常数)的思路来完成。故含的项的系数为

例7、(2008重庆文) (10)若(x+)n的展开式中前三项的系数成等差数,则展开式中x4项的系数为

(A)6               (B)7               (C)8           (D)9

解:因为的展开式中前三项的系数成等差数列,所以,即,解得:(舍)。。令可得,,所以的系数为,故选B。

考点三:概率

[内容解读]概率试题主要考查基本概念和基本公式,对等可能性事件的概率、互斥事件的概率、独立事件的概率、事件在n次独立重复试验中恰发生k次的概率、离散型随机变量分布列和数学期望等内容都进行了考查。掌握古典概型和几何概型的概率求法。

[命题规律](1)概率统计试题的题量大致为2道,约占全卷总分的6%-10%,试题的难度为中等或中等偏易。

(2)概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神。

例8、(2008江苏)在平面直角坐标系中,设D是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E是到原点的距离不大于1的点构成的区域,向D中随意投一点,则落入E中的概率为          

解:如图:区域D表示边长为4的正方形ABCD的内部(含边界),区域E表示单位圆及其内部,因此

 答案

点评:本题考查几何概型,利用面积相比求概率。

例9、(2008重庆文)(9)从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为

(A)             (B)             (C)          (D)

解:,故选B。

点评:本小题主要考查组合的基本知识及等可能事件的概率。

例10、(2008山东理)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为

(A)        (B)

(C)        (D)

解:基本事件总数为

选出火炬手编号为时,由可得4种选法;

时,由可得4种选法;时,由可得4种选法。

点评:本题考查古典概型及排列组合问题。

例11、(2008福建理)(5)某一批花生种子,如果每1粒发牙的概率为,那么播下4粒种子恰有2粒发芽的概率是( )

A.                B.             C.             D.

解:独立重复实验

例12、(2008陕西省理)某射击测试规则为:每人最多射击3次,击中目标即终止射击,第次击中目标得分,3次均未击中目标得0分.已知某射手每次击中目标的概率为0.8,其各次射击结果互不影响.

(Ⅰ)求该射手恰好射击两次的概率;

(Ⅱ)该射手的得分记为,求随机变量的分布列及数学期望.

解: (Ⅰ)设该射手第次击中目标的事件为,则

(Ⅱ)可能取的值为0,1,2,3.   的分布列为


0
1
2
3

0.008
0.032
0.16
0.8

.

例13、(2008广东卷17).随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为

(1)求的分布列;(2)求1件产品的平均利润(即的数学期望);

(3)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?

解:的所有可能取值有6,2,1,-2;

的分布列为:


6
2
1
-2

0.63
0.25
0.1
0.02

(2)

(3)设技术革新后的三等品率为,则此时1件产品的平均利润为

依题意,,即,解得 所以三等品率最多为

考点四:统计

[内容解读]理解简单随机抽样、系统抽样、分层抽样的概念,了解它们各自的特点及步骤.会用三种抽样方法从总体中抽取样本.会用样本频率分布估计总体分布.会用样本数字特征估计总体数字特征.会利用散点图和线性回归方程,分析变量间的相关关系;掌握独立性检验的步骤与方法。

[命题规律](1)概率统计试题的题量大致为2道,约占全卷总分的6%-10%,试题的难度为中等或中等偏易。

(2)概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神。

例14、(2007广东)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生

产能耗Y(吨标准煤)的几组对照数据

 
   3
   4
   5
   6
   y
   2.5
   3
   4
   4.5

   (1)请画出上表数据的散点图;

   (2)请根据上表提供的数据,崩最小二乘法求出Y关于x的线性回归方程Y=bx+a;

   (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?

  (参考数值:32.5+43+54+64.5=66.5)

解:(1)散点图略.

  (2), , ,

   由所提供的公式可得,故所求线性回归方程为10分

  (3)吨.

例15、(2008江苏模拟)为了研究某高校大学新生学生的视力情况,随机地抽查了该校100名进校学生的视力情况,得到频率分布直方图,如图.已知前4组的频数从左到右依次是等比数列的前四项,后6组的频数从左到右依次是等差数列的前六项.

(Ⅰ)求等比数列的通项公式;

(Ⅱ)求等差数列的通项公式;

(Ⅲ)若规定视力低于5.0的学生属于近视学生,试估计该校新生的近视率的大小.

解:(I)由题意知:

 

∵数列是等比数列,∴公比

. 

(II) ∵=13,

, 

∵数列是等差数列,∴设数列公差为,则得,

 ∴=87,

  

(III)=,

(或=)

     答:估计该校新生近视率为91%.

例16、(2008江苏模拟)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日   期
1月10日
2月10日
3月10日
4月10日
5月10日
6月10日
昼夜温差x(°C)
10
11
13
12
8
6
就诊人数y(个)
22
25
29
26
16
12

   该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

   (Ⅰ)求选取的2组数据恰好是相邻两个月的概率;(5分)

   (Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程;(6分)

   (Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?(3分)

   (参考公式: )

解:(Ⅰ)设抽到相邻两个月的数据为事件A.因为从6组数据中选

取2组数据共有15种情况,每种情况都是等可能出现的

其中,抽到相邻两个月的数据的情况有5种       

所以       

(Ⅱ)由数据求得  

由公式求得    

再由        

所以关于的线性回归方程为    

(Ⅲ)当时,,

同样, 当时,,

所以,该小组所得线性回归方程是理想的.    

试题详情

1、求二项展开式中的指定项问题:方法主要是运用二项式展开的通项公式;

试题详情

2、解排列组合题的基本方法:

(1)      优限法:元素分析法:先考虑有限制条件的元素的要求,再考虑其他元素;

位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;

(2)      排异法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。

(3)      分类处理:某些问题总体不好解决时,常常分成若干类,再由分类计数原理得出结论;注意:分类不重复不遗漏。

(4)      分步处理:对某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决;在解题过程中,常常要既要分类,以要分步,其原则是先分类,再分步。

(5)      插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制元条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间。

(6)      捆绑法:把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列。

(7)      穷举法:将所有满足题设条件的排列与组合逐一列举出来;这种方法常用于方法数比较少的问题。

[命题规律]排列组合的知识在高考中经常以选择题或填空题的形式出现,难度属中等。

例1、(2008安徽理) 12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是(    )

A.           B.              C.           D.

解:从后排8人中选2人共种选法,这2人插入前排4人中且保证前排人的顺序不变,则先从4人中的5个空挡插入一人,有5种插法;余下的一人则要插入前排5人的空挡,有6种插法,故为;综上知选C。

例2、(2008全国II理)12.如图,一环形花坛分成A、B、C、D四块,现有4种不同的花供选种,要求在每块里种一种花,且相邻的2块种不同的花,则不同的种法种数为

(A)96              (B)  84         

(C) 60            (D) 48

解:分三类:种两种花有种种法;种三种花有种种法;种四种花有种种法.共有.

例3、(2008陕西省理)16.某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有     种.(用数字作答)

解:分两类:第一棒是丙有,第一棒是甲、乙中一人有

因此共有方案

考点二:二项式定理

[内容解读]掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题。对二项式定理的考查主要有以下两种题型:

试题详情

考点一:排列组合

[方法解读]

1、解排列组合题的基本思路:

①   将具体问题抽象为排列组合问题,是解排列组合应用题的关键一步

②   对“组合数”恰当的分类计算是解组合题的常用方法;

③   是用“直接法”还是用“间接法”解组合题,其前提是“正难则反”;

试题详情

4、统计

 (1)三种抽样方法

 ①简单随机抽样

 简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取.

 简单随机抽样的特点:被抽取样本的总体个数有限.从总体中逐个进行抽取,使抽样便于在实践中操作.它是不放回抽取,这使其具有广泛应用性.每一次抽样时,每个个体等可能的被抽到,保证了抽样方法的公平性.

 实施抽样的方法:抽签法:方法简单,易于理解.随机数表法:要理解好随机数表,即表中每个位置上等可能出现0,1,2,…,9这十个数字的数表.随机数表中各个位置上出现各个数字的等可能性,决定了利用随机数表进行抽样时抽取到总体中各个个体序号的等可能性.

 ②系统抽样

 系统抽样适用于总体中的个体数较多的情况.

 系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段中进行抽样时,采用的是简单随机抽样.

 系统抽样的操作步骤:第一步,利用随机的方式将总体中的个体编号;第二步,将总体的编号分段,要确定分段间隔,当(N为总体中的个体数,n为样本容量)是整数时,;当不是整数时,通过从总体中剔除一些个体使剩下的个体个数N能被n整除,这时;第三步,在第一段用简单随机抽样确定起始个体编号,再按事先确定的规则抽取样本.通常是将加上间隔k得到第2个编号,将加上k,得到第3个编号,这样继续下去,直到获取整个样本.

 ③分层抽样

 当总体由明显差别的几部分组成时,为了使抽样更好地反映总体情况,将总体中各个个体按某种特征分成若干个互不重叠的部分,每一部分叫层;在各层中按层在总体中所占比例进行简单随机抽样.

 分层抽样的过程可分为四步:第一步,确定样本容量与总体个数的比;第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步,将各层中抽取的个体合在一起,就是所要抽取的样本.

 (2)用样本估计总体

 样本分布反映了样本在各个范围内取值的概率,我们常常使用频率分布直方图来表示相应样本的频率分布,有时也利用茎叶图来描述其分布,然后用样本的频率分布去估计总体分布,总体一定时,样本容量越大,这种估计也就越精确.

 ①用样本频率分布估计总体频率分布时,通常要对给定一组数据进行列表、作图处理.作频率分布表与频率分布直方图时要注意方法步骤.画样本频率分布直方图的步骤:求全距→决定组距与组数→分组→列频率分布表→画频率分布直方图.

 ②茎叶图刻画数据有两个优点:一是所有的信息都可以从图中得到;二是茎叶图便于记录和表示,但数据位数较多时不够方便.

 ③平均数反映了样本数据的平均水平,而标准差反映了样本数据相对平均数的波动程度,其计算公式为. 有时也用标准差的平方---方差来代替标准差,两者实质上是一样的.

 (3)两个变量之间的关系

 变量与变量之间的关系,除了确定性的函数关系外,还存在大量因变量的取值带有一定随机性的相关关系.在本章中,我们学习了一元线性相关关系,通过建立回归直线方程就可以根据其部分观测值,获得对这两个变量之间的整体关系的了解.分析两个变量的相关关系时,我们可根据样本数据散点图确定两个变量之间是否存在相关关系,还可利用最小二乘估计求出回归直线方程.通常我们使用散点图,首先把样本数据表示的点在直角坐标系中作出,形成散点图.然后从散点图上,我们可以分析出两个变量是否存在相关关系:如果这些点大致分布在通过散点图中心的一条直线附近,那么就说这两个变量之间具有线性相关关系,这条直线叫做回归直线,其对应的方程叫做回归直线方程.在本节要经常与数据打交道,计算量大,因此同学们要学会应用科学计算器.

 (4)求回归直线方程的步骤:

 第一步:先把数据制成表,从表中计算出

 第二步:计算回归系数的ab,公式为

       

 第三步:写出回归直线方程

(4)独立性检验

列联表:列出的两个分类变量,它们的取值分别为的样本频数表称为列联表1

分类
1
2
总计
1



2



总计



    构造随机变量(其中)

得到的观察值常与以下几个临界值加以比较:

  如果 ,就有的把握因为两分类变量是有关系;

如果  就有的把握因为两分类变量是有关系;

如果  就有的把握因为两分类变量是有关系;

如果低于,就认为没有充分的证据说明变量是有关系.

  ②三维柱形图:如果列联表1的三维柱形图如下图

  由各小柱形表示的频数可见,对角线上的频数的积的差的绝对值

 较大,说明两分类变量是有关的,否则的话是无关的.

    

重点:一方面考察对角线频数之差,更重要的一方面是提供了构造随机变量进行独立性检验的思路方法。

 ③二维条形图(相应于上面的三维柱形图而画)

  由深、浅染色的高可见两种情况下所占比例,由数据可知要比小得多,由于差距较大,因此,说明两分类变量有关系的可能性较大,两个比值相差越大两分类变量有关的可能性也越的.否则是无关系的.

 

重点:通过图形以及所占比例直观地粗略地观察是否有关,更重要的一方面是提供了构造随机变量进行独立性检验的思想方法。

④等高条形图(相应于上面的条形图而画)

 由深、浅染色的高可见两种情况下的百分比;另一方面,数据

要比小得多,因此,说明两分类变量有关系的可能性较大,

否则是无关系的.

 

重点:直观地看出在两类分类变量频数相等的情况下,各部分所占的比例情况,是在图2的基础上换一个角度来理解。

试题详情

3.概率

(1)事件与基本事件:

 

 基本事件:试验中不能再分的最简单的“单位”随机事件;一次试验等可能的产生一个基本事件;任意两个基本事件都是互斥的;试验中的任意事件都可以用基本事件或其和的形式来表示.

 (2)频率与概率:随机事件的频率是指此事件发生的次数与试验总次数的比值.频率往往在概率附近摆动,且随着试验次数的不断增加而变化,摆动幅度会越来越小.随机事件的概率是一个常数,不随具体的实验次数的变化而变化.

 (3)互斥事件与对立事件:

事件
定义
集合角度理解
关系
互斥事件
事件不可能同时发生
两事件交集为空
事件对立,则必为互斥事件;
事件互斥,但不一是对立事件
对立事件
事件不可能同时发生,且必有一个发生
两事件互补

 (4)古典概型与几何概型:

 古典概型:具有“等可能发生的有限个基本事件”的概率模型.

 几何概型:每个事件发生的概率只与构成事件区域的长度(面积或体积)成比例.

 两种概型中每个基本事件出现的可能性都是相等的,但古典概型问题中所有可能出现的基本事件只有有限个,而几何概型问题中所有可能出现的基本事件有无限个.

 (5)古典概型与几何概型的概率计算公式:

 古典概型的概率计算公式:

 几何概型的概率计算公式:

 两种概型概率的求法都是“求比例”,但具体公式中的分子、分母不同.

 (6)概率基本性质与公式

①事件的概率的范围为:

②互斥事件的概率加法公式:

③对立事件的概率加法公式:

(7) 如果事件A在一次试验中发生的概率是p,则它在n次独立重复试验中恰好发生k次的概率是pn(k) = Cpk(1―p)n―k. 实际上,它就是二项式[(1―p)+p]n的展开式的第k+1项.

(8)独立重复试验与二项分布

 ①.一般地,在相同条件下重复做的n次试验称为n次独立重复试验.注意这里强调了三点:(1)相同条件;(2)多次重复;(3)各次之间相互独立;

 ②.二项分布的概念:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为.此时称随机变量服从二项分布,记作,并称为成功概率.

试题详情

2.二项式定理

⑴ 二项式定理

(a +b)n =Can +Can-1b+…+Can-rbr +…+Cbn,其中各项系数就是组合数C,展开式共有n+1项,第r+1项是Tr+1 =Can-rbr.

⑵ 二项展开式的通项公式

二项展开式的第r+1项Tr+1=Can-rbr(r=0,1,…n)叫做二项展开式的通项公式。

⑶ 二项式系数的性质

①在二项式展开式中,与首末两端“等距离”的两个二项式系数相等,

即C= C (r=0,1,2,…,n).

②若n是偶数,则中间项(第项)的二项公式系数最大,其值为C;若n是奇数,则中间两项(第项和第项)的二项式系数相等,并且最大,其值为C= C.

③所有二项式系数和等于2n,即C+C+C+…+C=2n.

④奇数项的二项式系数和等于偶数项的二项式系数和,

即C+C+…=C+C+…=2n1.

试题详情


同步练习册答案