0  438269  438277  438283  438287  438293  438295  438299  438305  438307  438313  438319  438323  438325  438329  438335  438337  438343  438347  438349  438353  438355  438359  438361  438363  438364  438365  438367  438368  438369  438371  438373  438377  438379  438383  438385  438389  438395  438397  438403  438407  438409  438413  438419  438425  438427  438433  438437  438439  438445  438449  438455  438463  447090 

20.(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;   .   

(II)至少有1人选择的项目属于民生工程的概率.

解: 记第名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件    i=1,2,3.由题意知相互独立,相互独立,

相互独立,(i,j,k=1,2,3,且i,j,k互不相同)相互独立,

(Ⅰ)他们选择的项目所属类别互不相同的概率

           P= .   

(Ⅱ)至少有1人选择的项目属于民生工程的概率       

      P=

试题详情

19.(2009宁夏海南卷理)(本小题满分12分)

某工厂有工人1000名, 其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人),现用分层抽样方法(按A类、B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)。

(I)求甲、乙两工人都被抽到的概率,其中甲为A类工人,乙为B类工人;     

(II)从A类工人中的抽查结果和从B类工人中的抽插结果分别如下表1和表2.

表1:

生产能力分组





人数
4
8

5
3

表2:

生产能力分组




人数
   6
   y
   36
   18

(i)先确定x,y,再在答题纸上完成下列频率分布直方图。就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)     

(ii)分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数,同一组中的数据用该组区间的中点值作代表)     

解:(Ⅰ)甲、乙被抽到的概率均为,且事件“甲工人被抽到”与事件“乙工人被抽到”相互独立,故甲、乙两工人都被抽到的概率为   

   .

 (Ⅱ)(i)由题意知A类工人中应抽查25名,B类工人中应抽查75名.

  故  ,得

   ,得 . 

  频率分布直方图如下

    从直方图可以判断:B类工人中个体间的关异程度更小 .

  (ii)

    

    

   A类工人生产能力的平均数,B类工人生产能力的平均数以及全工厂工人生产能力的平均数的会计值分别为123,133.8和131.1 .

试题详情

18.(2009辽宁卷理)(本小题满分12分)

某人向一目射击4次,每次击中目标的概率为。该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6。击中目标时,击中任何一部分的概率与其面积成正比。

(Ⅰ)设X表示目标被击中的次数,求X的分布列;

(Ⅱ)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A)     

解:(Ⅰ)依题意X的分列为.   

  

(Ⅱ)设A1表示事件“第一次击中目标时,击中第i部分”,i=1,2.

     B1表示事件“第二次击中目标时,击中第i部分”,i=1,2.

依题意知P(A1)=P(B1)=0.1,P(A2)=P(B2)=0.3,

,

所求的概率为

   

           ………12分

试题详情

17.(2009全国卷Ⅱ理)(本小题满分12分)

某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核。

(I)求从甲、乙两组各抽取的人数;   

(II)求从甲组抽取的工人中恰有1名女工人的概率;

(III)记表示抽取的3名工人中男工人数,求的分布列及数学期望。        

分析:(I)这一问较简单,关键是把握题意,理解分层抽样的原理即可。另外要注意此分层抽样与性别无关。

(II)在第一问的基础上,这一问处理起来也并不困难。.   

 从甲组抽取的工人中恰有1名女工人的概率

(III)的可能取值为0,1,2,3

分布列及期望略。

评析:本题较常规,比08年的概率统计题要容易。在计算时,采用分类的方法,用直接法也可,但较繁琐,考生应增强灵活变通的能力。

试题详情

16.(2009四川卷文)(本小题满分12分)

为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡)。某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中是省外游客,其余是省内游客。在省外游客中有持金卡,在省内游客中有持银卡。                     .   

(I)在该团中随机采访2名游客,求恰有1人持银卡的概率;

(II)在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率.

[解析]I)由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡.

设事件A为“采访该团2人,恰有1人持银卡”,则

    

所以采访该团2人,恰有1人持银卡的概率是.   …………………………………6分

(II)设事件B为“采访该团2人,持金卡人数与持银卡人数相等”,可以分为:

事件B1为“采访该团2人,持金卡0人,持银卡0人”,或事件B2为“采访该团2人,持金卡1人,持银卡1人”两种情况,则

所以采访该团2人,持金卡与持银卡人数相等的概率是.   ……………………12分

试题详情

16.解析:依题意,可分别取、6、11取,则有

 .   

的分布列为


5
6
7
8
9
10
11



 




.

试题详情

15.(2009湖北卷理)(本小题满分10分)(注意:在试题卷上作答无效)

一个盒子里装有4张大小形状完全相同的卡片,分别标有数2,3,4,5;另一个盒子也装有4张大小形状完全相同的卡片,分别标有数3,4,5,6。现从一个盒子中任取一张卡片,其上面的数记为x;再从另一盒子里任取一张卡片,其上面的数记为y,记随机变量,求的分布列和数学期望。       

试题详情

14.(2009天津卷文)(本小题满分12分)

为了了解某工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂

(Ⅰ)求从A,B,C区中分别抽取的工厂个数;

(Ⅱ)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率。

[答案](1) 2,3,2(2)

[解析] (1)解: 工厂总数为18+27+18=63,样本容量与总体中的个体数比为,所以从A,B,C三个区中应分别抽取的工厂个数为2,3,2.

(2)设为在A区中抽得的2个工厂,为在B区中抽得的3个工厂,为在C区中抽得的2个工厂,这7个工厂中随机的抽取2个,全部的可能结果有:种,随机的抽取的2个工厂至少有一个来自A区的结果有,同理还能组合5种,一共有11种。所以所求的概率为

[考点定位]本小题主要考查分层抽样、用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查运用统计、概率知识解决实际问题的能力。

试题详情

13.(2009江西卷理)(本小题满分12分)

某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助,令表示该公司的资助总额.

 (1) 写出的分布列; (2) 求数学期望.      

解:(1)的所有取值为

         

      

(2).

试题详情

12.(2009江西卷文)(本小题满分12分)

某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助.求:

(1) 该公司的资助总额为零的概率;

(2)该公司的资助总额超过15万元的概率..   

解:(1)设表示资助总额为零这个事件,则

(2)设表示资助总额超过15万元这个事件,则

      

试题详情


同步练习册答案