0  438283  438291  438297  438301  438307  438309  438313  438319  438321  438327  438333  438337  438339  438343  438349  438351  438357  438361  438363  438367  438369  438373  438375  438377  438378  438379  438381  438382  438383  438385  438387  438391  438393  438397  438399  438403  438409  438411  438417  438421  438423  438427  438433  438439  438441  438447  438451  438453  438459  438463  438469  438477  447090 

16、解:(1)记”所取出的非空子集满足性质r”为事件A

基本事件总数n==31

事件A包含的基本事件是{1,4,5}、{2,3,5}、{1,2,3,4}

事件A包含的基本事件数m=3

所以

(II)依题意,的所有可能取值为1,2,3,4,5

, 

的分布列为:


  1
2
  3
  4
  5
  P
 

   
 
 

从而E+2+3+4+5

试题详情

18、(福建卷)16.(13分)

从集合的所有非空子集中,等可能地取出一个。

(1)    记性质r:集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;

(2)    记所取出的非空子集的元素个数为,求的分布列和数学期望E

试题详情

17、(湖南卷)17.(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.,现在3名工人独立地从中任选一个项目参与建设。      

(I)求他们选择的项目所属类别互不相同的概率;

(II)记为3人中选择的项目属于基础设施工程、民生工程和产业建设工程的人数,求 的分布列及数学期望。

解:记第1名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件    ,,,i=1,2,3.由题意知相互独立,相互独立,相互独立,,,(i,j,k=1,2,3,且i,j,k互不相同)相互独立,且P()=,P()=,P()=

(1)    他们选择的项目所属类别互不相同的概率

P=3!P()=6P()P()P()=6=

(2) 解法1  设3名工人中选择的项目属于民生工程的人数为,由己已知,-B(3,),且=3

所以P(=0)=P(=3)==

 P(=1)=P(=2)=  =       

P(=2)=P(=1)==

P(=3)=P(=0)=  =

的分布是


0
1
2
3
P




的数学期望E=0+1+2+3=2

解法2 第i名工人选择的项目属于基础工程或产业工程分别为事件

i=1,2,3 ,由此已知,·D,相互独立,且

P()-()= P()+P()=+=

所以--,既       

的分布列是



1
2
3





试题详情

18.(江西卷)(本小题满分12分)

某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助,令表示该公司的资助总额.

 (1) 写出的分布列; (2) 求数学期望.      

解:(1)的所有取值为

         

      

(2).

试题详情

16、(全国卷2)20(本小题满分12分)

某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核。

(I)求从甲、乙两组各抽取的人数;   

(II)求从甲组抽取的工人中恰有1名女工人的概率;

(III)记表示抽取的3名工人中男工人数,求的分布列及数学期望。        

分析:(I)这一问较简单,关键是把握题意,理解分层抽样的原理即可。另外要注意此分层抽样与性别无关。

(II)在第一问的基础上,这一问处理起来也并不困难。

 从甲组抽取的工人中恰有1名女工人的概率

(III)的可能取值为0,1,2,3

分布列及期望略。

评析:本题较常规,比08年的概率统计题要容易。在计算时,采用分类的方法,用直接法也可,但较繁琐,考生应增强灵活变通的能力。

试题详情

15、(山东卷) (19)(本小题满分12分)

   在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q为0.25,在B处的命中率为q,该同学选择先在A处投一球,以后都在B处投,用表示该同学投篮训练结束后所得的总分,其分布列为

       
0     
2       
  3  
  4  
  5  
     p    
0.03     
  P1       
  P2      
P3     
P4       

(1)    求q的值;   

(2)    求随机变量的数学期望E;

(3)    试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。

解:(1)设该同学在A处投中为事件A,在B处投中为事件B,则事件A,B相互独立,且P(A)=0.25,, P(B)= q,.

根据分布列知: =0时=0.03,所以,q=0.8.

(2)当=2时, P1=    

=0.75 q( )×2=1.5 q( )=0.24

=3时, P2  ==0.01,

=4时, P3==0.48,

=5时, P4=

=0.24

所以随机变量的分布列为

       
0     
2       
  3  
  4  
  5  
  p    
0.03     
  0.24       
  0.01     
0.48    
0.24         

随机变量的数学期望

(3)该同学选择都在B处投篮得分超过3分的概率为

;

该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72.

由此看来该同学选择都在B处投篮得分超过3分的概率大.

[命题立意]:本题主要考查了互斥事件的概率,相互独立事件的概率和数学期望,以及运用概率知识解决问题的能力.

试题详情

14、(全国1)19.(本小题满分12分)(注意:在试题卷上作答无效)

  甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局。

 (I)求甲获得这次比赛胜利的概率;

 (II)设表示从第3局开始到比赛结束所进行的局数,求得分布列及数学期望。

分析:本题较常规,比08年的概率统计题要容易。

需提醒的是:认真审题是前提,部分考生由于考虑了前两局的概率而导致失分,这是很可惜的,主要原因在于没读懂题。

另外,还要注意表述,这也是考生较薄弱的环节。

试题详情

13、(辽宁卷)(19)(本小题满分12分)

某人向一目射击4次,每次击中目标的概率为。该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6。击中目标时,击中任何一部分的概率与其面积成正比。

(Ⅰ)设X表示目标被击中的次数,求X的分布列;

(Ⅱ)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A)     

(19)解:

(Ⅰ)依题意X的分列为

  

       ………………6分

(Ⅱ)设A1表示事件“第一次击中目标时,击中第i部分”,i=1,2.

     B1表示事件“第二次击中目标时,击中第i部分”,i=1,2.

依题意知P(A1)=P(B1)=0.1,P(A2)=P(B2)=0.3,

,

所求的概率为

   

           ………12分

 

试题详情

12、(浙江卷)

20090423
 
19.(本题满分14分)在个自然数中,任取个数.

  (I)求这个数中恰有个是偶数的概率;

  (II)设为这个数中两数相邻的组数(例如:若取出的数为,则有两组相邻的数

,此时的值是).求随机变量的分布列及其数学期望

解析:(I)记“这3个数恰有一个是偶数”为事件A,则;   

(II)随机变量的取值为的分布列为


0
1
2
P



所以的数学期望为    

试题详情

11、(天津卷)(18)(本小题满分12分)

在10件产品中,有3件一等品,4件二等品,3件三等品。从这10件产品中任取3件,求:

(I) 取出的3件产品中一等品件数X的分布列和数学期望;  

(II) 取出的3件产品中一等品件数多于二等品件数的概率。  

本小题主要考查古典概型及计算公式、离散型随机变量的分布列和数学期望、互斥事件等基础知识,考查运用概率知识解决实际问题的能力。满分12分。

(Ⅰ)解:由于从10件产品中任取3件的结果为,从10件产品中任取3件,其中恰有k件一等品的结果数为,那么从10件产品中任取3件,其中恰有k件一等品的概率为P(X=k)= ,k=0,1,2,3.

所以随机变量X的分布列是

X
0
1
2
3
P




X的数学期望EX=

(Ⅱ)解:设“取出的3件产品中一等品件数多于二等品件数”为事件A,“恰好取出1件一等品和2件三等品”为事件A1“恰好取出2件一等品“为事件A2,”恰好取出3件一等品”为事件A3由于事件A1,A2,A3彼此互斥,且A=A1∪A2∪A3

P(A2)=P(X=2)= ,P(A3)=P(X=3)= ,

所以取出的3件产品中一等品件数多于二等品件数的概率为

P(A)=P(A1)+P(A2)+P(A3)= ++=

试题详情


同步练习册答案