3、理解图象所反映的化学意义;
2、坐标原点在纵轴和横轴上所表示的数值;
1、要懂得纵轴、横轴所表示的化学意义;
当x>5时,原不等式可化为
x-5-(2x+3)<1,
解之得x>-9,所以x>5.
说明:在含有绝对值的不等式中,“去绝对值”是基本策略.
例13 解不等式|2x-1|>|2x-3|.
分析 本题也可采取前一题的方法:采取用零点分区间讨论去掉绝
之,则更显得流畅,简捷.
解 原不等式同解于
(2x-1)2>(2x-3)2,
即4x2-4x+1>4x2-12x+9,
即8x>8,得x>1.
所以原不等式的解集为{x|x>1}.
说明:本题中,如果把2x当作数轴上的动坐标,则|2x-1|>|2x-3|表示2x到1的距离大于2x到3的距离,则2x应当在2的右边,从而2x>2即x>1.
22.(理)已知函数,
(1)讨论的奇偶性与单调性;
(2)若不等式的解集为的值;
(3)求的反函数;
(4)若,解关于的不等式R).
(文) 函数的定义域为(为实数).
(1)当时,求函数的值域;
(2)若函数在定义域上是减函数,求的取值范围;
.
21.函数是定义在R上的奇函数,当,
(1)求x<0时,的解析式;
(2)问是否存在这样的正数a,b,当的值域为?若存在,求出所有的a,b的值;若不存在说明理由.
20.有两个煤矿用汽车供应三个城镇的用煤,第一个煤矿月产煤120万吨,第二个煤矿月产煤200万吨. 第一个城镇每月用煤90万吨,第二个城镇每月用煤150万吨,第三个城镇每月用煤80万吨,又知第一个煤矿与三城镇的中心供应站的距离分别为20公里、10公里和12公里;第二个煤矿与三个城城镇的中心站的距离分别为8公里、16公里和30公里,问怎样调配煤才能使总的运输费用最少?
19.已知函数图象与函数的图象关于点A(0,1)对称。(1)求的解析式;(2)若,且在区间上为减函数,求实数的取值范围。
18.设,若,求证:(1)且; (2)方程在(0,1)内有两个实根。
17.已知f(x)是对数函数,f()+f()=1,求f()的值。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com