0  438695  438703  438709  438713  438719  438721  438725  438731  438733  438739  438745  438749  438751  438755  438761  438763  438769  438773  438775  438779  438781  438785  438787  438789  438790  438791  438793  438794  438795  438797  438799  438803  438805  438809  438811  438815  438821  438823  438829  438833  438835  438839  438845  438851  438853  438859  438863  438865  438871  438875  438881  438889  447090 

例1.已知大气压强为p0 cmHg,一端开口的玻璃管内封闭一部分气体,管内水银柱高度为h cm,(或两边水银柱面高度差为h cm),玻璃管静止,求下列图中封闭理想气体的压强各是多少?

解析:将图中的水银柱隔离出来做受力分析;⑺中取与管内气体接触的水银面为研究对象做受力分析. 本题的所有试管的加速度都为零.所以在⑴中:G=Np0S=PS;在⑵图中:p0S+G=pSp0S+ρghS=pS,取cmHg(厘米汞柱)为压强单位则有:p= p0+h;同理,图⑶中试管内气体的压强为:p= p0-h;采用正交分解法解得:图⑷中:p= p0+hsinθ;图⑸中:p=p0-hsinθ;图⑹中取高出槽的汞柱为研究对象,可得到:p= p0-h;图⑺中取与管内气体接触的水银面(无质量)为研究对象:p0S+ρghS=pSp= p0+h

点评:

(1) 确定封闭气体压强主要是找准封闭气体与水银柱(或其他起隔绝作用的物体)的接触面,利用平衡的条件计算封闭气体的压强.

(2) 封闭气体达到平衡状态时,其内部各处、各个方向上压强值处处相等.

(3) 液体压强产生的原因是重力

(4)液体可将其表面所受压强向各个方向传递.

图8.3-1
 
例2.两个完全相同的圆柱形密闭容器,如图8.3-1所示,甲 中装有与容器等体积的水,乙中充满空气,试问:

(1)两容器各侧壁压强的大小关系及压强大小决定于哪些因素?

(2)若两容器同时做自由落体运动,容器侧壁所受压强将怎样变化?

解析:

(1)对于甲容器,上壁压强为零,底面压强最大,侧壁压强自上而下由小变大其大小决定于深度,对于乙容器各处器壁上的压强均相等,其大小决定于气体分子的温度和气体分子的密度。

(2)甲容器做自由落体运动时,处于完全失重状态,器壁各处的压强均为零;乙容器做自由落体运动时,气体分子的温度和气体分子的密度不变,所以器壁各处的压强不发生变化。

点评:要分析、弄清液体压强和气体压强产生的原因是解决本题的关键。

例3.钢瓶内装有高压气体,打开阀门高压气体迅速从瓶口喷出,当内外气压相等时立即关闭阀门。过一段时间后再打开阀门,问会不会再有气体喷出?

解析:第一次打开阀门气体高速喷出,气体迅速膨胀对外做功,但来不及吸热。由热力学第一定律可知,气体内能减少,导致温度突然下降。关闭阀门时,瓶内气体温度低于外界温度,但瓶内压强等于外界气体压强。过一段时间后,通过与外界热交换,瓶内温度升高到和外界温度相同,而瓶的体积没变,故而瓶内气体压强增大。因此,再次打开阀门,会有气体喷出。

点评:此题有两个过程,第一次相当于绝热膨胀过程,第二次是等容升温。

例4.一房间内,上午10时的温度为150C,下午2时的温度为250C,假定大气压无变化,则下午2时与上午10时相比较,房间内的  (  )

A.空气密度增大       B.空气分子的平均动增大

C.空气分子速率都增大      D.空气质量增大

解析:由于房间与外界相通,外界大气压无变化,因而房间内气体压强不变。但温度升高后,体积膨胀,导致分子数密度减小。所以,房间内空气质量减少,空气分子的平均动增大。但并非每个分子速率都增大,因为单个分子的运动是无规则的。答案B是正确。

点评:本题要求学生正确理解题意,弄清温度变化对分子运动的影响。

例5.如图所示,一气缸竖直放置,气缸内有一质量不可忽略的活塞,将一定量的理想气体封在气缸内,活塞与气缸壁无摩擦,气体处于平衡状态.现保持温度不变把气缸稍微倾斜一点,在达到平衡后,与原来相比,则(  )

A.气体的压强变大     B.气体的压强变小

C.气体的体积变大     D.气体的体积变小

解析:由活塞的受力分析可知,开始封闭气体的压强

P1=P0-mg/s,而气缸稍微倾斜一点后, P1S    P2S

图8.3-2
 
封闭气体的压强P2=P0-mgcosθ/s ,

由于P1<P2,而温度不变,由气态方程,mg  θ mg

则V2<V1,故AD正确.    P0S  P0S

图8.3-3
 
 

试题详情

5.理想气体分子间没有相互作用力。注意:一定质量的某种理想气体内能由温度  决定。

试题详情

4.一定质量的理想气体的体积、压强、温度之间的关系是: PV/T=常数  ,克拉珀珑方程是:  PV/T=RM/μ  

试题详情

2.气体的状态参量有:(p、V、T)

①压强(p):封闭气体的压强是大量分子对器壁 撞击  的宏观表现,其决定因素有:1) 温度   ;2)  单位体积内分子数

②体积(V):1m3= 103 l=  106ml 。  

③热力学温度T=  t+273.15  

试题详情

1.1atm= 1.01×105    pa= 76  cmHg,相当于  10.3  m高水柱所产生的压强。

试题详情

3.气体分子运动的特点。气体压强的微观意义。       

试题详情

2.气体的体积、温度、压强之间的关系.。          

试题详情

1.气体状态和状态参量。热力学温度。          

试题详情

例1.雷蒙德·戴维斯因研究来自太阳的电子中微子(v。)而获得了2002年度诺贝尔物理学奖.他探测中微子所用的探测器的主体是一个贮满615t四氯乙烯(C2Cl4)溶液的巨桶.电子中微子可以将一个氯核转变为一个氢核,其核反应方程式为               νe+3717Cl→3718Ar十 0-1e

已知3717Cl核的质量为36.95658 u,3718Ar核的质量为36.95691 u, 0-1e的质量为0.00055 u,1 u质量对应的能量为931.5MeV.根据以上数据,可以判断参与上述反应的电子中微子的最小能量为

(A)0.82 Me V   (B)0.31 MeV   (C)1.33 MeV   (D)0.51 MeV

[解析]由题意可得:电子中微子的能量E=mc2-(mAr+me-mCl)·931.5MeV

=(36.95691+0.00055-36.95658)×931.5MeV

=0.82MeV

则电子中微子的最小能量为  Emin=0.82MeV

  [点评]  应用爱因斯坦质能方程时,注意单位的使用。当用kg单位,c用m/s时,

单位是J,也可像本题利用1 u质量对应的能量为931.5MeV.

例2、质子、中子和氘核的质量分别为m1、m2、m3,质子和中子结合成氘核时,发出γ射线,已知普朗克恒量为h,真空中光速为c,则γ射线的频率υ= ______  .

[解析]  核反应中释放的能量ΔE=Δmc2以释放光子的形式释放出来,由于光子的能量为hυ,依能量守恒定律可知:hυ=Δmc2据此便可求出光子的频率。

 质子和中子结合成氘核:H+n  H+γ这个核反应的质量亏损为:

   Δm=m1+m2-m3

根据爱因斯坦质能方程  ΔE=Δmc2

  此核反应放出的能量  ΔE=(m1+m2-m)c2

   以γ射线形式放出,由E=hυ

        υ=

[点评]  此题考查计算质量亏损,根据爱因斯坦质能方程确定核能.关键是对质量亏损的理解和确定.

例3. 核聚变能是一种具有经济性能优越、安全可靠、无环境污染等优势的新能源。近年来,受控核聚变的科学可行性已得到验证,目前正在突破关键技术,最终将建成商用核聚变电站。一种常见的核聚变反应是由氢的同位素氘(又叫重氢)和氚(又叫超重氢)聚合成氦,并释放一个中子了。若已知氘原子的质量为2.0141u,氚原子的质量为3.0160u,氦原子的质量为4.0026u,中子的质量为1.0087u,1u=1.66×10-27kg。

⑴写出氘和氚聚合的反应方程。

⑵试计算这个核反应释放出来的能量。

⑶若建一座功率为3.0×105kW的核聚变电站,假设聚变所产生的能量有一半变成了电能,每年要消耗多少氘的质量?

(一年按3.2×107s计算,光速c=3.00×108m/s,结果取二位有效数字)

[解析](1)(3)

    (2)ΔE=Δmc2=(2.0141+3.0160-4.0026-1.0087)×1.66×10-27×32×1016J=2.8×10-12J

(3)M=

==23kg

例 4.众所周知,地球围绕着太阳做椭圆运动,阳光普照大地,万物生长.根据学过的知识试论述说明随着岁月的流逝,地球公转的周期,日、地的平均距离及地球表面的温度的变化趋势.

[解析]  太阳内部进行着剧烈的热核反应,在反应过程中向外释放着巨大的能量,这些能量以光子形式放出.根据爱因斯坦质能关系: ΔE=Δm·c2  , 知太阳质量在不断减小.

地球绕太阳旋转是靠太阳对地球的万有引力来提供向心力  G=mω2R, 现因M减小,即提供的向心力减小,不能满足所需的向心力,地球将慢慢向外做离心运动,使轨道半径变大,日地平均距离变大.

由上式可知,左边的引力G减小,半径R增大,引起地球公转的角速度变化,从而使公转周期变化 G=mR,T2=,即 T增大.

   一方面,因太阳质量变小,发光功率变小;另一方面,日地距离变大,引起辐射到地球表面的能量减小,导致地球表面温度变低.

  [点评]  该题集原子物理与力学为一体,立意新颖,将这一周而复始的自然用所学知识一步一步说明,是一道考查能力、体现素质的好题. 

试题详情

5.链式反应

   一个重核吸收一个中子后发生裂变时,分裂成两个中等质量核,同时释放若干个中子,如果这些中子再引起其它重核的裂变,就可以使这种裂变反应不断的进行下去,这种反应叫重核裂变的链式反应

试题详情


同步练习册答案