7. 设7.下列各组物质相互混合进行反应,既有气体生成最终又有沉淀生成的是
①金属钠投入CuSO4溶液中 ②过量的NaOH溶液和明矾溶液反应
③少量Na2O2投入过量的Ca(HCO3)2溶液中④金属铝投入KOH溶液中
A.①③ B.①④ C.②④ D.②③
6.(NH4)2SO4在一定条件下发生如下反应: 4(NH4)2SO4 =N2↑+6NH3↑+3SO2↑+SO3↑+7H2O
将反应后的混合气体通入BaCl2溶液,产生的沉淀为( )
A.BaSO4 B.BaSO3 C. BaS D.BaSO4和BaSO3
5.下列实验过程中,始终无明显现象的是
A.NO2通入FeSO4溶液中 B.CO2通入CaCl2溶液中
C.NH3通入AlCl3溶液中 D.SO2通入已酸化的Ba (NO3) 2溶液中
4.在给定条件下,下列加点的物质在化学反应中完全消耗的是
A.用50mL 12mol/L的氯化氢水溶液与足量二氧化锰共热制取氯气
B.向100mL 3mol/L的硝酸中加入5.6g铁
C.标准状况下,将1g铝片投入20mL 18.4mol/L的硫酸中
D.在5×107Pa、500℃和铁触媒催化的条件下,1mol氮气和3mol氢气反应
3.某合作学习小组讨论辨析:①漂白粉和酸雨都是混合物 ②煤和石油都是可再生能源 ③干冰、水晶、食盐分属分子晶体、原子晶体和离子晶体④不锈钢和目前流通的硬币都是合金 ⑤硫酸、纯碱、醋酸钠和生石灰分别属于酸、碱、盐和氧化物 ⑥豆浆和雾都是胶体。上述说法正确的是
A.①②④ B.①⑤⑥ C.①③④⑥ D.②③④⑤
2.下列微粒中,对水的电离平衡不产生影响的是
1.下列变化属于物理变化的是
A.熔融态的氯化钠导电 B.用加热的方法分离氯化钠固体和氯化铵固体
C.实验室用蒸馏法制取少量蒸馏水 D.将过氧化钠固体溶于水中
2. (2005年南通调研)如图6所示,光滑平行的水平金属导轨MNPQ相距l,在M点和P点间接一个阻值为R的电阻,在两导轨间矩形区域内有垂直导轨平面竖直向下、宽为d的匀强磁场,磁感强度为B。一质量为m,电阻为r的导体棒ab,垂直搁在导轨上,与磁场左边界相距d0。现用一大小为F、水平向右的恒力拉ab棒,使它由静止开始运动,棒ab在离开磁场前已经做匀速直线运动(棒ab与导轨始终保持良好的接触,导轨电阻不计)。求:
图6
(1)棒ab在离开磁场右边界时的速度;
(2)棒ab通过磁场区的过程中整个回路所消耗的电能;
(3)试分析讨论ab棒在磁场中可能的运动情况。
解析:(1)ab棒离开磁场右边界前做匀速运动,速度为vm,则有:
对ab棒=0,解得
(2)由能量守恒可得:
解得:
(3)设棒刚进入磁场时速度为v由:
棒在进入磁场前做匀加速直线运动,在磁场中运动可分三种情况讨论:
①若(或),则棒做匀速直线运动;
②若(或),则棒先加速后匀速;
③若(或),则棒先减速后匀速。
例4. (2005年肇庆市模拟)如图4所示,边长为L=2m的正方形导线框ABCD和一金属棒MN由粗细相同的同种材料制成,每米长电阻为R0=1/m,以导线框两条对角线交点O为圆心,半径r=0.5m的匀强磁场区域的磁感应强度为B=0.5T,方向垂直纸面向里且垂直于导线框所在平面,金属棒MN与导线框接触良好且与对角线AC平行放置于导线框上。若棒以v=4m/s的速度沿垂直于AC方向向右匀速运动,当运动至AC位置时,求(计算结果保留二位有效数字):
图4
(1)棒MN上通过的电流强度大小和方向;
(2)棒MN所受安培力的大小和方向。
解析:(1)棒MN运动至AC位置时,棒上感应电动势为
线路总电阻。
MN棒上的电流
将数值代入上述式子可得:
I=0.41A,电流方向:N→M
(2)棒MN所受的安培力:
方向垂直AC向左。
说明:要特别注意公式E=BLv中的L为切割磁感线的有效长度,即在磁场中与速度方向垂直的导线长度。
[模型要点]
(1)力电角度:与“导体单棒”组成的闭合回路中的磁通量发生变化→导体棒产生感应电动势→感应电流→导体棒受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,循环结束时加速度等于零,导体棒达到稳定运动状态。
(2)电学角度:判断产生电磁感应现象的那一部分导体(电源)→利用或求感应电动势的大小→利用右手定则或楞次定律判断电流方向→分析电路结构→画等效电路图。
(3)力能角度:电磁感应现象中,当外力克服安培力做功时,就有其他形式的能转化为电能;当安培力做正功时,就有电能转化为其他形式的能。
[误区点拨]
正确应答导体棒相关量(速度、加速度、功率等)最大、最小等极值问题的关键是从力电角度分析导体单棒运动过程;而对于处理空间距离时很多同学总想到动能定律,但对于导体单棒问题我们还可以更多的考虑动量定理。所以解答导体单棒问题一般是抓住力是改变物体运动状态的原因,通过分析受力,结合运动过程,知道加速度和速度的关系,结合动量定理、能量守恒就能解决。
[模型演练]
1. (2005年大联考)如图5所示,足够长金属导轨MN和PQ与R相连,平行地放在水平桌面上。质量为m的金属杆ab可以无摩擦地沿导轨运动。导轨与ab杆的电阻不计,导轨宽度为L,磁感应强度为B的匀强磁场垂直穿过整个导轨平面。现给金属杆ab一个瞬时冲量I0,使ab杆向右滑行。
图5
(1)回路最大电流是多少?
(2)当滑行过程中电阻上产生的热量为Q时,杆ab的加速度多大?
(3)杆ab从开始运动到停下共滑行了多少距离?
答案:(1)由动量定理得
由题可知金属杆作减速运动,刚开始有最大速度时有最大,所以回路最大电流:
(2)设此时杆的速度为v,由动能定理有:
而Q=
解之
由牛顿第二定律及闭合电路欧姆定律
得
(3)对全过程应用动量定理有:
而所以有
又
其中x为杆滑行的距离所以有。
例3. (2005年上海高考)如图3所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1m,导轨平面与水平面成=37°角,下端连接阻值为R的电阻。匀速磁场方向与导轨平面垂直。质量为0.2kg、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25。
图3
(1)求金属棒沿导轨由静止开始下滑时的加速度大小;
(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8W,求该速度的大小;
(3)在上问中,若R=,金属棒中的电流方向由a到b,求磁感应强度的大小与方向。(g=10m/s2,°=0.6,cos37°=0.8)
解析:(1)金属棒开始下滑的初速为零,根据牛顿第二定律
①
由①式解得 ②
(2)设金属棒运动达到稳定时,速度为v,所受安培力为F,棒在沿导轨方向受力平衡:
③
此时金属棒克服安培力做功的功率等于电路中电阻R消耗的电功率
④
由③、④两式解得:
⑤
(3)设电路中电流为I,两导轨间金属棒的长为l,磁场的磁感应强度为B
⑥
⑦
由⑥、⑦两式解得 ⑧
磁场方向垂直导轨平面向上。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com