6.模的性质:⑴;⑵;⑶;⑷;
5.共轭的性质:⑴ ;⑵ ;⑶ ;⑷ 。
4.运算律:(1)
3.几个重要的结论:
;⑶;⑷
⑸性质:T=4;;
(6) 以3为周期,且;=0;
(7)。
2.复数的代数形式及其运算:设z1= a + bi , z2 = c + di (a,b,c,d∈R),则:
(1) z 1± z2 = (a + b) ± (c + d)i;⑵ z1.z2 = (a+bi)·(c+di)=(ac-bd)+ (ad+bc)i;⑶z1÷z2 = (z2≠0) ;
1.概念:
⑴z=a+bi∈Rb=0 (a,b∈R)z= z2≥0;
⑵z=a+bi是虚数b≠0(a,b∈R);
⑶z=a+bi是纯虚数a=0且b≠0(a,b∈R)z+=0(z≠0)z2<0;
⑷a+bi=c+dia=c且c=d(a,b,c,d∈R);
5.等差数列前n项和最值的求法:
⑴ ;⑵利用二次函数的图象与性质。
4.前项和的求法:⑴拆、并、裂项法;⑵倒序相加法;⑶错位相减法。
2.等差、等比数列性质
等差数列 等比数列
通项公式
前n项和
性质 ①an=am+ (n-m)d, ①an=amqn-m;
②m+n=p+q时am+an=ap+aq ②m+n=p+q时aman=apaq
③成AP ③成GP
④成AP, ④成GP,
等差数列特有性质:①项数为2n时:S2n=n(an+an+1)=n(a1+a2n); ;;②项数为2n-1时:S2n-1=(2n-1); ;;
③若;若;
若。
|
|
⑷叠乘法(型);⑸构造法(型);(6)迭代法;
⑺间接法(例如:);⑻作商法(型);⑼待定系数法;⑽(理科)数学归纳法。
注:当遇到时,要分奇数项偶数项讨论,结果是分段形式。
1.定义:
⑴等差数列 ;
⑵等比数列
;
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com