0  445083  445091  445097  445101  445107  445109  445113  445119  445121  445127  445133  445137  445139  445143  445149  445151  445157  445161  445163  445167  445169  445173  445175  445177  445178  445179  445181  445182  445183  445185  445187  445191  445193  445197  445199  445203  445209  445211  445217  445221  445223  445227  445233  445239  445241  445247  445251  445253  445259  445263  445269  445277  447090 

2.y=ln2x+2lnx+2的极小值为(  )  A.e-1       B.0  C.-1    D.1

试题详情

1.函数y=x3-3x的极大值为m,极小值为n,则m+n为(  )

A.0         B.1      C.2        D.4

试题详情

1.3.2利用导数研究函数的极值

(第一课时)

学习目标:
掌握求可导函数的极值的步骤
学习重点难点:
掌握求可导函数的极值的步骤
自主学习
一、知识回顾:
1. 函数的导数与函数的单调性的关系:设函数y=f(x) 在某个区间内有导数,如果在这个区间内>0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内<0,那么函数y=f(x) 在为这个区间内的减函数
2.用导数求函数单调区间的步骤:①求函数f(x)的导数f′(x). ②令f′(x)>0解不等式,得x的范围就是递增区间.③令f′(x)<0解不等式,得x的范围,就是递减区间
二、新课探究
1.极大值: 一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点
2.极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0).就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点
3.极大值与极小值统称为极值
在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点:
(ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小
(ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个
(ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,是极大值点,是极小值点,而>
(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点
4. 判别f(x0)是极大、极小值的方法:
满足,且在的两侧的导数异号,则的极值点,是极值,并且如果两侧满足“左正右负”,则的极大值点,是极大值;如果两侧满足“左负右正”,则的极小值点,是极小值
5. 求可导函数f(x)的极值的步骤:
 (1)确定函数的定义区间,求导数f′(x)
(2)求方程f′(x)=0的根
(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值
三、例题解析:
例1求y=x3-4x+4的极值
解:y′=(x3-4x+4)′=x2-4=(x+2)(x-2)  令y′=0,解得
x1=-2,x2=2x变化时,y′,y的变化情况如下表


-2
(-2,2)
2


+
0

0
+


极大值

极小值

∴当x=-2时,y有极大值且y极大值=  当x=2时,y有极小

值且y极小值=-

例2求y=(x2-1)3+1的极值                   

解:y=6x(x2-1)2=6x(x+1)2(x-1)2y′=0解得x1=-1,x2=0,x3=1

x变化时,y′,y的变化情况如下表



-1
(-1,0)
0
(0,1)
1



0

0
+
0
+


无极值

极小值0

无极值

∴当x=0时,y有极小值且y极小值=0

求极值的具体步骤:第一,求导数f′(x).第二,令f′(x)=0求方程的根,第三,列表,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值,如果左右都是正,或者左右都是负,那么f(x)在这根处无极值.如果函数在某些点处连续但不可导,也需要考虑这些点是否

是极值点

课堂巩固:

试题详情

21.[浙江省富阳新中2008(上)高三期中考试数学(理科)试卷第22题] (本小题满分15分)

设函数,其中

(Ⅰ)若,求的最小值;

(Ⅱ)如果在定义域内既有极大值又有极小值,求实数的取值范围;

(Ⅲ)是否存在最小的正整数,使得当时,不等式恒成立.

试题详情

20. [广东省海珠区2009届高三综合测试二理科数学第21题](本小题满分14分)

已知

(Ⅰ)求函数的单调区间;

(Ⅱ)求函数上的最小值;

(Ⅲ)对一切的,恒成立,求实数的取值范围.

试题详情

19.[浙江省嘉兴市2008学年高中学科基础测试数学(理科)试卷第20题] (本小题满分14分)

   已知函数 (a∈R)

  (Ⅰ)若函数f(x)的图象在x=2处的切线方程为,求a,b的值;

  (Ⅱ)若函数f(x)在(1,+∞)为增函数,求a的取值范围.

试题详情

18.[福建莆田一中2008-2009学年期中考试卷高三数学(理科)第11题]

,则下列各结论中正确的是(    )

A.     B.

C.     D.

试题详情

17.[福建莆田一中2008-2009学年期中考试卷高三数学(理科)]

已知上的减函数,那么的取值

范围是(   )

20081014
 
   A.      B.      C.     D.

试题详情

16、[江苏南京二中2009届高三第一次教学质量检测试卷数学第6题]  

函数  ()是上的减函数,则的取值范围是

   A.   B.     C.    D.

试题详情

15、[福建莆田一中2008-2009学年期中考试卷高三数学(文科)第8题]

设函数f(x)= 若f(a)>0则a的取值范围是(  )

A.(-,-1)(1,+)       B.(-,-1)(0,+)

C.(-1,0)(1,0)             D.(-1,0)(0,+)

试题详情


同步练习册答案