要使Tn>总成立,需<T1=成立,即m<8且m∈Z,故适合条件的m的最大值为7
(3)bn=
当n>5时,Sn=n2-9n+40,故Sn=
解 (1)由an+2=2an+1-anan+2-an+1=an+1-an可知{an}成等差数列,d==-2,∴an=10-2n
(2)由an=10-2n≥0可得n≤5,当n≤5时,Sn=-n2+9n,
(3)设bn=(n∈N*),Tn=b1+b2+……+bn(n∈N*),是否存在最大的整数m,使得对任意n∈N*均有Tn>成立?若存在,求出m的值;若不存在,说明理由。
数列{an}中,a1=8,a4=2且满足an+2=2an+1-an,(n∈N*)
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn;
∴ ∴
变式:
又也适合③、∴
∴∴………………③
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com