∴
(2)解:由(1)得,即,
故数列是首项为,公比为-1的等比数列.
……4分
∵,
∴ ……2分
是首项为,公比为-1的等比数列. ……4分
证法2:∵an,an+1是关于x 的方程x2-2n x+ bn=0 (n∈N*)的两根,
由an+an+1=2n,得,故数列
∴ ……2分
(1)求证:数列{ an-×2n}是等比数列;
(2)设Sn是数列{an}的前n项的和,问是否存在常数λ,使得bn-λSn>0对任意n∈N*都成立,若存在,求出λ的取值范围;若不存在,请说明理由.
(本题主要考查数列的通项公式、数列前n项和、不等式等基础知识,考查化归与转化、分类与整合、特殊与一般的数学思想方法,以及推理论证能力、运算求解能力和抽象概括能力)
(1)证法1:∵an,an+1是关于x 的方程x2-2n x+ bn=0 (n∈N*)的两根,
1、(2009广州一模)已知数列{an}的相邻两项an,an+1是关于x 的方程x2-2n x+ bn=0 (n∈N*)的两根,且a1=1.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com