*6、弦切角定理及其推论:
(1)弦切角:顶点在圆上,并且一边和圆相交,另一边和圆相切的角叫做弦切角。如图:∠PAC为弦切角。
(2)△ABC的周长为,面积为S,其内切圆的半径为r,则
常见结论:(1)Rt△ABC的三条边分别为:a、b、c(c为斜边),则它的内切圆的半径;
5、三角形的内心与外心:三角形的内切圆的圆心叫做三角形的内心.三角形的内心就是三内角角平分线的交点.三角形的外接圆的圆心叫做三角形的外心.三角形的外心就是三边中垂线的交点.
(1)(2)(3)
4、圆的有关性质:
(1)垂径定理:如果一条直线具备以下五个性质中的任意两个性质:①经过圆心;②垂直弦;③平分弦;④平分弦所对的劣弧;⑤平分弦所对的优弧,那么这条直线就具有另外三个性质.注:具备①,③时,弦不能是直径.(2)两条平行弦所夹的弧相等.(3)圆心角的度数等于它所对的弧的度数.(4)一条弧所对的圆周角等于它所对的圆心角的一半.(5)圆周角等于它所对的弧的度数的一半.(6)同弧或等弧所对的圆周角相等.(7)在同圆或等圆中,相等的圆周角所对的弧相等.(8)90º的圆周角所对的弦是直径,反之,直径所对的圆周角是90º,直径是最长的弦.(9)圆内接四边形的对角互补.
*3、直角三角形中的射影定理:如图:Rt△ABC中,∠ACB=90o,CD⊥AB于D,则有:
如图:△ABC中,DE∥BC,DE与AB、AC相交与点D、E,则有:
D、E、F,则有
(2)推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
2、平行线分线段成比例定理:
(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。
如图:a∥b∥c,直线l1与l2分别与直线a、b、c相交与点A、B、C
1、多边形内角和公式:n边形的内角和等于(n-2)180º(n≥3,n是正整数),外角和等于360º
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com