0  48992  49000  49006  49010  49016  49018  49022  49028  49030  49036  49042  49046  49048  49052  49058  49060  49066  49070  49072  49076  49078  49082  49084  49086  49087  49088  49090  49091  49092  49094  49096  49100  49102  49106  49108  49112  49118  49120  49126  49130  49132  49136  49142  49148  49150  49156  49160  49162  49168  49172  49178  49186  447090 

5.平面和平面平行

两个平面的位置关系、两个平面平行的判定与性质.

试题详情

③等腰四面体的四条顶点和对面重心的连线段的长相等,且可表示为

④h = 4r.

二、空间正余弦定理.

空间正弦定理:sin∠ABD/sin∠A-BC-D=sin∠ABC/sin∠A-BD-C=sin∠CBD/sin∠C-BA-D

空间余弦定理:cos∠ABD=cos∠ABCcos∠CBD+sin∠ABCsin∠CBDcos∠A-BC-D

 

 

 

立体几何知识要点

(一)空间的直线与平面

⒈平面的基本性质   ⑴三个公理及公理三的三个推论和它们的用途. ⑵斜二测画法.

⒉空间两条直线的位置关系:相交直线、平行直线、异面直线.

 ⑴公理四(平行线的传递性).等角定理.

 ⑵异面直线的判定:判定定理、反证法.

 ⑶异面直线所成的角:定义(求法)、范围.

⒊直线和平面平行      直线和平面的位置关系、直线和平面平行的判定与性质.

⒋直线和平面垂直

 ⑴直线和平面垂直:定义、判定定理.

 ⑵三垂线定理及逆定理.

试题详情

②等腰四面体的外接球半径可表示为

试题详情

①等腰四面体的体积可表示为

试题详情

(在等腰四面体ABCD中,记BC = AD =a,AC = BD = b,AB = CD = c,体积为V,外接球半径为R,内接球半径为r,高为h),则有

试题详情

3. 等腰四面体:对棱都相等的四面体称为等腰四面体,好象平面几何中的等腰三角形.根据定义不难证明以长方体的一个顶点的三条面对角线的端点为顶点的四面体是等腰四面体,反之也可以将一个等腰四面体拼补成一个长方体.

试题详情

2. 直角四面体:有一个三面角的三个面角均为直角的四面体称为直角四面体,相当于平面几何的直角三角形. (在直角四面体中,记V、l、S、R、r、h分别表示其体积、六条棱长之和、表面积、外接球半径、内切球半径及侧面上的高),则有空间勾股定理:S2△ABC+S2△BCD+S2△ABD=S2△ACD.

试题详情

1. 对照平面几何中的三角形,我们不难得到立体几何中的四面体的类似性质:

①四面体的六条棱的垂直平分面交于一点,这一点叫做此四面体的外接球的球心;

②四面体的四个面组成六个二面角的角平分面交于一点,这一点叫做此四面体的内接球的球心;

③四面体的四个面的重心与相对顶点的连接交于一点,这一点叫做此四面体的重心,且重心将每条连线分为3┱1;

④12个面角之和为720°,每个三面角中任两个之和大于另一个面角,且三个面角之和为180°.

试题详情

II. 竞赛知识要点

试题详情

③证直线和平面平行定理:已知直线平面,且CDE三点不共线,则a∥的充要条件是存在有序实数对使.(常设求解存在即证毕,若不存在,则直线AB与平面相交).

试题详情


同步练习册答案