0  48993  49001  49007  49011  49017  49019  49023  49029  49031  49037  49043  49047  49049  49053  49059  49061  49067  49071  49073  49077  49079  49083  49085  49087  49088  49089  49091  49092  49093  49095  49097  49101  49103  49107  49109  49113  49119  49121  49127  49131  49133  49137  49143  49149  49151  49157  49161  49163  49169  49173  49179  49187  447090 

4.异面直线所成角的求法:

(1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;

(2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;

试题详情

3.立平斜公式:如图,AB和平面所成的角是,AC在平面内,BC和AB的射影BA1,设∠ABC=,则coscos=cos

试题详情

平行四边形: A2. 已知:直二面角M-AB-N中,AE  M,BF N,∠EAB=,∠ABF=,异面直线AE与BF所成的角为,则

试题详情

1.从一点O出发的三条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面∠BOC上的射影在∠BOC的平分线上;

试题详情

11.球

⑴球和它的性质:球体、球面、球的大圆、小圆、球面距离.

 ⑵球的体积公式和表面积公式.

试题详情

10.多面体欧拉定理的发现

 ⑴简单多面体的欧拉公式.

 ⑵正多面体.

试题详情

9.棱柱与棱锥

 ⑴多面体.

 ⑵棱柱与它的性质:棱柱、直棱柱、正棱柱、棱柱的性质.

 ⑶平行六面体与长方体:平行六面体、直平行六面体、长方体、正四棱柱、

  正方体;平行六面体的性质、长方体的性质.

 ⑷棱锥与它的性质:棱锥、正棱锥、棱锥的性质、正棱锥的性质.

 ⑸直棱柱和正棱锥的直观图的画法.

试题详情

8.距离

 ⑴点到平面的距离.

 ⑵直线到与它平行平面的距离.

 ⑶两个平行平面的距离:两个平行平面的公垂线、公垂线段.

 ⑷异面直线的距离:异面直线的公垂线及其性质、公垂线段.

(四)简单多面体与球

试题详情

7.直线和平面所成的角与二面角

 ⑴平面的斜线和平面所成的角:三面角余弦公式、最小角定理、斜线和平

  面所成的角、直线和平面所成的角.

 ⑵二面角:①定义、范围、二面角的平面角、直二面角.

      ②互相垂直的平面及其判定定理、性质定理.

试题详情

6.平面和平面垂直

互相垂直的平面及其判定定理、性质定理.

(二)直线与平面的平行和垂直的证明思路(见附图)

(三)夹角与距离

试题详情


同步练习册答案