0  439  447  453  457  463  465  469  475  477  483  489  493  495  499  505  507  513  517  519  523  525  529  531  533  534  535  537  538  539  541  543  547  549  553  555  559  565  567  573  577  579  583  589  595  597  603  607  609  615  619  625  633  447090 

解:1.∵1=p, n=pn-1,∴n=pn.

又b1=q,

 b2=q1+rb1=q(p+r),

 b3=q2+rb2=q(p2+pq+r2),…

设想

用数学归纳法证明:

当n=2时,等式成立;

设当n=k时,等式成立,即

则bk+1=qk+rbk=

即n=k+1时等式也成立

所以对于一切自然数n≥2,都成立

 

 

试题详情

2.求

试题详情

1.用p,q,r,n表示bn,并用数学归纳法加以证明;

试题详情

由(1)(2)两方程及y2≠0,y1≠y3,得y1+y2+y3=0.

由上式及y2≠0,得y3≠-y1,也就是A3A1也不能与Y轴平行今将y2=-y1-y3代入(1)式得:

(3)式说明A3A1与抛物线x2=2qy的两个交点重合,即A3A1与抛物线x2=2qy相切所以只要A1A2,A2A3与抛物线x2=2qy相切,则A3A1也与抛物线x2=2qy相切

九.(附加题,本题满分20分,计入总分)

已知数列和数列其中

试题详情

解:不失一般性,设p>0,q>0.又设y2=2px的内接三角形顶点为

A1(x1,y1),A2(x2,y2),A3(x3,y3)

因此y12=2px1,y22=2px2 ,y32=2px3

其中y1≠y2 , y2≠y3 , y3≠y1 .

依题意,设A1A2,A2A3与抛物线x2=2qy相切,要证A3A1也与抛物线x2=2qy相切

因为x2=2qy在原点O处的切线是y2=2px的对称轴,所以原点O不能是所设内接三角形的顶点即(x1,y1),(x2,y2),(x3,y3),都不能是(0,0);又因A1A2与x2=2qy相切,所以A1A2不能与Y轴平行,即x1≠x2 , y1≠-y2,直线A1A2的方程是

同理由于A2A3与抛物线x2=2qy相切,A2A3也不能与Y轴平行,即

x2≠x3, y2≠-y3,同样得到

试题详情


              B                   

                                  

         M                          

            R                     

   A          N                  

          Q          D            

      K      S                    

                 P                  

          C                        

证:连结AC,在△ABC中,

∵AM=MB,CN=NB,∴MN∥AC

在△ADC中,∵AQ=QD,CP=PD,

∴QP∥AC∴MN∥QP

同理,连结BD可证MQ∥NP

∴MNPQ是平行四边形

取AC的中点K,连BK,DK

∵AB=BC,∴BK⊥AC,

∵AD=DC,∴DK⊥AC因此平面BKD与AC垂直

∵BD在平面BKD内,∴BD⊥AC∵MQ∥BD,QP∥AC,∴MQ⊥QP,即∠MQP为直角故MNPQ是矩形

八.(本题满分18分)

          Y                   

 x2=2qy                         

                               

                   y2=2px      

                A1               

                               

        O A2  A3         X    

抛物线y2=2px的内接三角形有两边与抛物线x2=2qy相切,证明这个三角形的第三边也与x2=2qy相切

试题详情

2.化为图形是椭圆

已知圆锥体的底面半径为R,高为H

求内接于这个圆锥体并且体积最大的圆柱体的高h(如图)

           A                    

                               

                                    

         D   c         H      

                               

                     h         

B   E                     

        O                 

                           

       2R                   

解:设圆柱体半径为r高为h

由△ACD∽△AOB得

由此得

圆柱体体积

由题意,H>h>0,利用均值不等式,有

(注:原“解一”对h求导由驻点解得)

五.(本题满分15分)

(要写出比较过程)

解一:当>1时,

解二:

六.(本题满分16分)

               A               

                                

           M    P(ρ,θ)               

                           X   

                                

     O                        

                N        B    

如图:已知锐角∠AOB=2α内有动点P,PM⊥OA,PN⊥OB,且四边形PMON的面积等于常数c2今以O为极点,∠AOB的角平分线OX为极轴,求动点P的轨迹的极坐标方程,并说明它表示什么曲线

解:设P的极点坐标为(ρ,θ)∴∠POM=α-θ,∠NOM=α+θ,

OM=ρcos(α-θ),PM=ρsin(α-θ),

ON=ρcos(α+θ),PN=ρsin(α+θ),

四边形PMON的面积

这个方程表示双曲线由题意,

动点P的轨迹是双曲线右面一支在∠AOB内的一部分

 

七.(本题满分16分)

已知空间四边形ABCD中AB=BC,CD=DA,M,N,P,Q分别是边AB,BC,CD,DA的中点(如图)求证MNPQ是一个矩形

试题详情

解:1.得2x-3y-6=0图形是直线

试题详情


同步练习册答案