(1)=1-a-2≤0,
解:(Ⅰ)f'(x)== ,∵f(x)在[-1,1]上是增函数,∴f'(x)≥0对x∈[-1,1]恒成立,即x2-ax-2≤0对x∈[-1,1]恒成立. ①设(x)=x2-ax-2,
方法一:
(2) 设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式
m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
(1)求实数的值组成的集合;
21.已知f(x)=(x∈R)在区间[-1,1]上是增函数.
综上可知,.故四边形面积的最大值为4,最小值为.
(2)当直线与轴垂直时,,此时,四边形的面积.同理当与轴垂直时,也有四边形的面积. 当直线,均与轴不垂直时,设:,代入消去得: 设所以,, 所以,,同理所以四边形的面积令因为当,且S是以u为自变量的增函数,所以.
即:椭圆方程为
为的中点
解:(1)由题意,
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com