22.(本小题满分10分)选修4-1:几何证明选讲
如图,过圆外一点作它的一条切线,切点为,过点作直线垂直直线,垂足为.
(Ⅰ)证明:;
请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分.做答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑.
21.解:(Ⅰ),
于是解得或
因,故.
(Ⅱ)证明:已知函数,都是奇函数.
所以函数也是奇函数,其图像是以原点为中心的中心对称图形.而.可知,函数的图像按向量平移,即得到函数的图像,故函数的图像是以点为中心的中心对称图形.
(Ⅲ)证明:在曲线上任取一点.
由知,过此点的切线方程为
.
令得,切线与直线交点为.
令得,切线与直线交点为.
直线与直线的交点为.
从而所围三角形的面积为.
所以,所围三角形的面积为定值.
设函数,曲线在点处的切线方程为y=3.
(Ⅰ)求的解析式:
(Ⅱ)证明:函数的图像是一个中心对称图形,并求其对称中心;
(Ⅲ)证明:曲线上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值.
20.解:(Ⅰ)由:知.
设,在上,因为,所以,得,.
在上,且椭圆的半焦距,于是
消去并整理得 , 解得(不合题意,舍去).
故椭圆的方程为.
(Ⅱ)由知四边形是平行四边形,其中心为坐标原点,
因为,所以与的斜率相同,
故的斜率.设的方程为.
由 消去并化简得 .
设,,,.
因为,所以.
.
所以.此时,
故所求直线的方程为,或.
21.(本小题满分12分)
20.(本小题满分12分)
在直角坐标系xOy中,椭圆C1:=1(a>b>0)的左、右焦点分别为F1,F2.F2也是抛物线C2:的焦点,点M为C1与C2在第一象限的交点,且|MF2|=.
(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足,直线l∥MN,且与C1交于A,B两点,若,求直线l的方程.
0.3
,
,
,
.
(Ⅱ)
,
当时,为最小值.
0.5
0.2
0.2
Y2
2
8
12
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com