4.分类方法:明确讨论对象,确定对象的全体,确定分类标准,正确进行分类;逐类进行讨论,获取阶段性成果;归纳小结,综合出结论。
3.分类原则:分类对象确定,标准统一,不重复,不遗漏,分层次,不越级讨论。
2.所谓分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答。实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。
1.分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想对于简化研究对象,发展人的思维有着重要帮助,因此,有关分类讨论的数学命题在高考试题中占有重要位置。
16. 解:将原方程化为:,
∴
令,它表示倾角为45°的直线系,
令,它表示焦点在x轴上,顶点为(-a,0)(a,0)的等轴双曲线在x轴上方的部分,
∵原方程有解,
∴两个函数的图象有交点,由下图,知
∴
∴k的取值范围为
15. 解:令表示以(2,0)为圆心,以2为半径的圆在x轴的上方的部分(包括圆与x轴的交点),如下图所示,表示过原点的直线系,不等式的解即是两函数图象中半圆在直线上方的部分所对应的x值。
由于不等式解集
因此,只需要
∴a的取值范围为(2,+)。
14. 解:原方程等价于
令,在同一坐标系内,画出它们的图象,
其中注意,当且仅当两函数的图象在[0,3)上有唯一公共点时,原方程有唯一解,由下图可见,当m=1,或时,原方程有唯一解,因此m的取值范围为[-3,0]{1}。
注:一般地,研究方程时,需先将其作等价变形,使之简化,再利用函数图象的直观性研究方程的解的情况。
13.
提示:y=x-m表示倾角为45°,纵截距为-m的直线方程,而则表示以(0,0)为圆心,以1为半径的圆在x轴上方的部分(包括圆与x轴的交点),如下图所示,显然,欲使直线与半圆有两个不同交点,只需直线的纵截距,即。
12. 最小值为
提示:对,联想到两点的距离公式,它表示点(x,1)到(1,0)的距离,表示点(x,1)到点(3,3)的距离,于是表示动点(x,1)到两个定点(1,0)、(3,3)的距离之和,结合图形,易得。
11.
提示:设,画出两函数图象示意图,要使方程有四个不相等实根,只需使
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com