例8.
分析:
解:(1)当k=4时,方程变为4x2=0,即x=0,表示直线;
(2)当k=8时,方程变为4y2=0,即y=0,表示直线;
(i)当k<4时,方程表示双曲线;(ii)当4<k<6时,方程表示椭圆;
(iii)当k=6时,方程表示圆;(iv)当6<k<8时,方程表示椭圆;
(v)当k>8时,方程表示双曲线。
例7.已知等比数列的前n项之和为,前n+1项之和为,公比q>0,令。
分析:对于等比数列的前n项和Sn的计算,需根据q是否为1分为两种情形:
故还需对q再次分类讨论。
解:
例6.
分析:这是一个含参数a的不等式,一定是二次不等式吗?不一定,故首先对二次项系数a分类:(1)a≠0(2)a=0,对于(2),不等式易解;对于(1),又需再次分类:a>0或a<0,因为这两种情形下,不等式解集形式是不同的;不等式的解是在两根之外,还是在两根之间。而确定这一点之后,又会遇到1与谁大谁小的问题,因而又需作一次分类讨论。故而解题时,需要作三级分类。
解:
综上所述,得原不等式的解集为
;;
;;
。
例5.
分析:解无理不等式,需要将两边平方后去根号,以化为有理不等式,而根据不等式的性质可知,只有在不等式两边同时为正时,才不改变不等号方向,因此应根据运算需求分类讨论,对x分类。
解:
例4.
分析:解对数不等式时,需要利用对数函数的单调性,把不等式转化为不含对数符号的不等式。而对数函数的单调性因底数a的取值不同而不同,故需对a进行分类讨论。
解:
例3.已知圆x2+y2=4,求经过点P(2,4),且与圆相切的直线方程。
分析:容易想到设出直线的点斜式方程y-4=k(x-2)再利用直线与圆相切的充要条件:“圆心到切线的距离等于圆的半径”,待定斜率k,从而得到所求直线方程,但要注意到:过点P的直线中,有斜率不存在的情形,这种情形的直线是否也满足题意呢?因此本题对过点P的直线分两种情形:(1)斜率存在时,…(2)斜率不存在…
解(略):所求直线方程为3x-4y+10=0或x=2
例2.
分析:
因此,只要根据已知条件,求出cosA,sinB即可得cosC的值。但是由sinA求cosA时,是一解还是两解?这一点需经过讨论才能确定,故解本题时要分类讨论。对角A进行分类。
解:
这与三角形的内角和为180°相矛盾。
例1.一条直线过点(5,2),且在x轴,y轴上截距相等,则这直线方程为( )
A. B.
C. D.
分析:设该直线在x轴,y轴上的截距均为a,
当a=0时,直线过原点,此时直线方程为;
当时,设直线方程为,方程为。
6.注意简化或避免分类讨论。
5.含参数问题的分类讨论是常见题型。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com