例7.点P(x,y)在椭圆上移动时,求函数u=x2+2xy+4y2+x+2y的最大值.
解:∵点P(x,y)在椭圆上移动, ∴可设 于是
=
=
令, ∵,∴|t|≤.
于是u=,(|t|≤).
当t=,即时,u有最大值.
∴θ=2kπ+(k∈Z)时,.
例6.设方程x2+2kx+4=0的两实根为x1,x2,若≥3,求k的取值范围.
解:∵≥3,
以,代入整理得(k2-2)2≥5,又∵Δ=4k2-16≥0,
∴解得k∈(-)∪[,+].
例5.如图,已知在矩形ABCD中,C(4,4),点A在曲线(x>0,y>0)上移动,且AB,BC两边始终分别平行于x轴,y轴,求使矩形ABCD的面积为最小时点A的坐标.
分析及解:设A(x,y),如图所示,则(4-x)(4-y) (1)
此时S表示为变量x,y的函数,如何将S表示为一个变量x(或y)的函数呢?有的同学想到由已知得x2+y2=9,如何利用此条件?是从等式中解出x(或y),再代入(1)式,因为表达式有开方,显然此方法不好.
如果我们将(1)式继续变形,会得到S=16-4(x+y)+xy (2)
这时我们可联想到x2+y2与x+y、xy间的关系,即(x+y)2=9+2xy.
因此,只需设t=x+y,则xy=,代入(2)式得 S=16-4t+(3)S表示为变量t的二次函数,
∵0<x<3,0<y<3,∴3<t<,∴当t=4时,SABCD的最小值为.
此时
注:换元前后新旧变量的取值范围是不同的,这样才能防止出现不必要的错误.
例4.设f(x)是一次函数,且其在定义域内是增函数,又,试求f(x)的表达式.
分析及解:因为此函数的模式已知,故此题需用待定系数法求出函数表达式.
设一次函数y=f(x)=ax+b (a>0),可知 ,
∴.
比较系数可知:
解此方程组,得 ,b=2,∴所求f(x)=.
例3.设双曲线的中心是坐标原点,准线平行于x轴,离心率为,已知点P(0,5)到该双曲线上的点的最近距离是2,求双曲线方程.
分析及解:由题意可设双曲线方程为,∵,∴a=2b,因此所求双曲线方程可写成: (1),故只需求出a可求解.
设双曲线上点Q的坐标为(x,y),则|PQ|= (2),∵点Q(x,y)在双曲线上,∴(x,y)满足(1)式,代入(2)得|PQ|= (3),此时|PQ|2表示为变量y的二次函数,利用配方法求出其最小值即可求解.
由(3)式有(y≥a或y≤-a).
二次曲线的对称轴为y=4,而函数的定义域y≥a或y≤-a,因此,需对a≤4与a>4分类讨论.
(1)当a≤4时,如图(1)可知函数在y=4处取得最小值,
∴令,得a2=4
∴所求双曲线方程为.
(2)当a>4时,如图(2)可知函数在y=a处取得最小值,
∴令,得a2=49,
∴所求双曲线方程为.
注:此题是利用待定系数法求解双曲线方程的,其中利用配方法求解二次函数的最值问题,由于二次函数的定义域与参数a有关,因此需对字母a的取值分类讨论,从而得到两个解,同学们在解答数习题时应学会综合运用数学思想方法解题.
例2.设F1和F2为双曲线的两个焦点,点P在双曲线上且满足∠F1PF2=90°,则ΔF1PF2的面积是( ).
(A)1 (B) (C)2 (D)
分析及解:欲求 (1),而由已知能得到什么呢?
由∠F1PF2=90°,得 (2),
又根据双曲线的定义得|PF1|-|PF2|=4 (3),那么(2)、(3)两式与要求的三角形面积有何联系呢?我们发现将(3)式完全平方,即可找到三个式子之间的关系.即,
故∴ ,∴ 选(A).
注:配方法实现了“平方和”与“和的平方”的相互转化.
2(xy+yz+zx)=11,4(x+y+z)=24.而欲求的对角线长为,因此需将对称式写成基本对称式x+y+z及xy+yz+zx的组合形式,完成这种组合的常用手段是配方法.故=62-11=25
∴ ,应选C.
例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为( ).
(A) (B) (C)5 (D)6
分析及解:设长方体三条棱长分别为x,y,z,则依条件得:
2.为了实施有效的化归,既可以变更问题的条件,也可以变更问题的结论,既可以变换问题的内部结构,又可以变换问题的外部形式,既可以从代数的角度去认识问题,又可以从几何的角度去解决问题。
1.熟练、扎实地掌握基础知识、基本技能和基本方法是转化的基础;丰富的联想、机敏细微的观察、比较、类比是实现转化的桥梁;培养训练自己自觉的化归与转化意识需要对定理、公式、法则有本质上的深刻理解和对典型习题的总结和提炼,要积极主动有意识地去发现事物之间的本质联系。“抓基础,重转化”是学好中学数学的金钥匙。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com