例6.数列中,且满足
⑴求数列的通项公式;
⑵设,求;
⑶设=,是否存在最大的整数,使得对任意,均有成立?若存在,求出的值;若不存在,请说明理由。
解:(1)由题意,,为等差数列,设公差为,
由题意得,.
(2)若,
时,
(3)
若对任意成立,即对任意成立,
的最小值是,的最大整数值是7。
即存在最大整数使对任意,均有
说明:本例复习数列通项,数列求和以及有关数列与不等式的综合问题。.
五、强化训练
(一)用基本量方法解题
例5.在直角坐标平面上有一点列,对一切正整数,点位于函数的图象上,且的横坐标构成以为首项,为公差的等差数列。
⑴求点的坐标;
⑵设抛物线列中的每一条的对称轴都垂直于轴,第条抛物线的顶点为,且过点,记与抛物线相切于的直线的斜率为,求:。
⑶设,等差数列的任一项,其中是中的最大数,,求的通项公式。
解:(1)
(2)的对称轴垂直于轴,且顶点为.设的方程为:
把代入上式,得,的方程为:。
,
=
(3),
T中最大数.
设公差为,则,由此得
说明:本例为数列与解析几何的综合题,难度较大(1)、(2)两问运用几何知识算出,解决(3)的关键在于算出及求数列的公差。
例4、(04年重庆)设a1=1,a2=,an+2=an+1-an (n=1,2,---),令bn=an+1-an (n=1,2---)求数列{bn}的通项公式,(2)求数列{nan}的前n项的和Sn。
解:(I)因
故{bn}是公比为的等比数列,且
(II)由
注意到可得
记数列的前n项和为Tn,则
例3.(04年浙江)设数列{an}的前项的和Sn=(an-1) (n+),(1)求a1;a2; (2)求证数列{an}为等比数列。
解: (Ⅰ)由,得 ∴ 又,即,得.
(Ⅱ)当n>1时,
得所以是首项,公比为的等比数列.
2.解综合题要总揽全局,尤其要注意上一问的结论可作为下面论证的已知条件,在后面求解的过程中适时应用.
说明:1.本例主要复习用等差、等比数列的定义证明一个数列为等差,等比数列,求数列通项与前项和。解决本题的关键在于由条件得出递推公式。
综上可知,所求的求和公式为S=2(3n-4)+2.
由①和②得,数列{b}是首项为3,公比为2的等比数列,故b=3?2.
当n≥2时,S=4a+2=2(3n-4)+2;当n=1时,S=a=1也适合上式.
例2.已知数列中,是其前项和,并且,
⑴设数列,求证:数列是等比数列;
⑵设数列,求证:数列是等差数列;
⑶求数列的通项公式及前项和。
分析:由于{b}和{c}中的项都和{a}中的项有关,{a}中又有S=4a+2,可由S-S作切入点探索解题的途径.
解:(1)由S=4a,S=4a+2,两式相减,得S-S=4(a-a),即a=4a-4a.(根据b的构造,如何把该式表示成b与b的关系是证明的关键,注意加强恒等变形能力的训练)
a-2a=2(a-2a),又b=a-2a,所以b=2b ①
已知S=4a+2,a=1,a+a=4a+2,解得a=5,b=a-2a=3 ②
例1.已知数列{a}是公差d≠0的等差数列,其前n项和为S.
(2)过点Q(1,a),Q(2,a)作直线12,设l与l的夹角为θ,
证明:(1)因为等差数列{a}的公差d≠0,所以
Kpp是常数(k=2,3,…,n).
(2)直线l的方程为y-a=d(x-1),直线l的斜率为d.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com