10. 甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.
(Ⅰ)分别求甲、乙两人考试合格的概率;
(Ⅱ)求甲、乙两人至少有一人考试合格的概率. (2004年福建卷)
9. 某地区有5个工厂,由于用电紧缺,规定每个工厂在一周内必须选择某一天停电
(选哪一天是等可能的).假定工厂之间的选择互不影响.
(Ⅰ)求5个工厂均选择星期日停电的概率;
(Ⅱ)求至少有两个工厂选择同一天停电的概率. (2004年浙江卷)
8. 从4名男生和2名女生中任选3人参加演讲比赛.
(Ⅰ)求所选3人都是男生的概率;
(Ⅱ)求所选3人中恰有1名女生的概率;
(Ⅲ)求所选3人中至少有1名女生的概率. (2004年天津卷)
6. 已知8支球队中有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支.求:
(Ⅰ)A、B两组中有一组恰有两支弱队的概率;
(Ⅱ)A组中至少有两支弱队的概率. (2004年全国卷Ⅱ)
解:(Ⅰ)解法一:三支弱队在同一组的概率为
故有一组恰有两支弱队的概率为
解法二:有一组恰有两支弱队的概率
(Ⅱ)解法一:A组中至少有两支弱队的概率
解法二:A、B两组有一组至少有两支弱队的概率为1,由于对A组和B组来说,至少有两支弱队的概率是相同的,所以A组中至少有两支弱队的概率为
(Ⅰ)求这名同学得300分的概率;
(Ⅱ)求这名同学至少得300分的概率. (2004年全国卷Ⅲ)
5. 从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为,每位男同学能通过测验的概率均为.试求:
(Ⅰ)选出的3位同学中,至少有一位男同学的概率;
(Ⅱ)10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.
(2004年全国卷Ⅰ)
解:本小题主要考查组合,概率等基本概念,独立事件和互斥事件的概率以及运用概率知识
解决实际问题的能力,满分12分.
解:(Ⅰ)随机选出的3位同学中,至少有一位男同学的概率为
1-;………………6分
(Ⅱ)甲、乙被选中且能通过测验的概率为
;………………12分
(Ⅱ)求至少有两件不合格的概率.(精确到0.001) (2003年新课程卷)
4 有三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验.
(Ⅰ)求恰有一件不合格的概率;
(Ⅱ)至少几人同时上网的概率小于0.3?(2002年新课程卷)
3 某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立).
(Ⅰ)求至少3人同时上网的概率;
2 如图,用A、B、C三类不同的元件连接成两个系统N1、N2.当元件A、B、C都正常工作时,系统N1正常工作;当元件A正常工作且元件B、C至少有一个正常工作时,系统N2正常工作.已知元件A、B、C正常工作的概率依次为0.80,0.90,0.90.分别求系统N1、N2正常工作的概率P1、P2. (2001年新课程卷)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com