0  7716  7724  7730  7734  7740  7742  7746  7752  7754  7760  7766  7770  7772  7776  7782  7784  7790  7794  7796  7800  7802  7806  7808  7810  7811  7812  7814  7815  7816  7818  7820  7824  7826  7830  7832  7836  7842  7844  7850  7854  7856  7860  7866  7872  7874  7880  7884  7886  7892  7896  7902  7910  447090 

1.导数的常规问题:

(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

试题详情

1. 假设每一架飞机引擎飞机中故障率为P,且个引擎是否发生故障是独立的,如果有至少50%的引擎能正常运行,问对于多大的P而言,4引擎飞机比2引擎飞机更安全?

解  飞机成功飞行的概率:

4引擎飞机为:

2引擎飞机为:

要使4引擎飞机比2引擎飞机更安全,只要

所以

 

 

试题详情

则P(A)=0.05,  P(B)=0.1,

(1)至少有一件废品的概率

(2)至多有一件废品的概率

 

 

作业

试题详情

例4  要制造一种机器零件,甲机床废品率为0.05,而乙机床废品率为0.1,而它们的生产是独立的,从它们制造的产品中,分别任意抽取一件,求:

(1)其中至少有一件废品的概率; (2)其中至多有一件废品的概率.

解: 设事件A为“从甲机床抽得的一件是废品”;B为“从乙机床抽得的一件是废品”.

试题详情

例1 猎人在距离100米处射击一野兔,其命中率为0.5,如果第一次射击未中,则猎人进行第二次射击,但距离150米. 如果第二次射击又未中,则猎人进行第三次射击,并且在发射瞬间距离为200米. 已知猎人的命中概率与距离的平方成反比,求猎人命中野兔的概率.

解  记三次射击依次为事件A,B,C,其中,由,求得k=5000。

,命中野兔的概率为

 

例2  1个产品要经过2道加工程序,第一道工序的次品率为3%,第二道工序次品率为2%,求产品的次品率.

解  设“第一道工序出现次品“为事件A,“第二道工序出现次品”为事件B,“至少有一道工序出现次品”该产品就是次品,所求概率为

 

例3  如图,某电子器件是由三个电阻组成的回路,其中共有六个焊接点A、B、C、D、E、F,如果某个焊接点脱落,整个电路就会不通。每个焊接点脱落的概率均是,现在发现电路不通了,那么至少有两个焊接点脱落的概率是多少?

                                             

解:

 

试题详情

1. 在100件产品中,有95件合格品,5件次品,从中任取2件,求:

(1)  2件都是合格品的概率;

(2)  2件都是次品的概率;

(3)1件是合格品,1件是次品的概率。

解  从100件产品中任取2件的可能出现的结果数,就是从100个元素中任取2个元素的组合数,由于任意抽取,这些结果出现的可能性相等.为基本事件总数.

(1)00件产品中有95件合格品,取到2件合格品的结果数,就是从95个元素中任取2个组合数,记“任取2件都是合格品”为事件A1,那么

(2)由于在100件产品中有5件次品,取到2件次品的结果数为.记“任取2件都是次品”为事件A2,那么事件A2的概率为:

(3)记“任取2件,1件是次品,1件是合格品”为种,则事件A3的概率为:

备用课时三   相互独立事件同时发生的概率

 

例题

试题详情

答:至少有两张牌花色相同的概率是0.8945

 

例3 在20件产品中有15件正品,5件次品,从中任取3件,求:

(1)恰有1件次品的概率;(2)至少有1件次品的概率.

解 (1)从20件产品中任取3件的取法有,其中恰有1件次品的取法为。

恰有一件次品的概率P=.

(2)法一 从20件产品中任取3件,其中恰有1件次品为事件A1,恰有2件次品为事件A2,3件全是次品为事件A3,则它们的概率

P(A1)= =,,,

而事件A1、A2、A3彼此互斥,因此3件中至少有1件次品的概率

P(A1+A2+A3)=P(A1)+P(A2)+P(A3)= .

法二 记从20件产品中任取3件,3件全是正品为事件A,那么任取3件,至少有1件次品为,根据对立事件的概率加法公式P()=

 

例4  1副扑克牌有红桃、黑桃、梅花、方块4种花色,每种13张,共52张,从1副洗好的牌中任取4张,求4张中至少有3张黑桃的概率.

解  从52张牌中任取4张,有种取法.“4张中至少有3张黑桃”,可分为“恰有3张黑桃”和“4张全是黑桃”,共有种取法

注  研究至少情况时,分类要清楚。

 

 

作业

试题详情

  P(A)=P(B1)+P(B2)+P(B3)+P(B4) 0.8945

解法2 设任取四长牌中至少有两张牌的花色相同为事件A,则为取出的四张牌的花色各不相同,    P()=,

试题详情

1. 袋中有a只黑球b只白球,它们除颜色不同外,没有其它差别,现在把球随机地一只一只摸出来,求第k次摸出的球是黑球的概率.

解法一:把a只黑球和b只白球都看作是不同的,将所有的球都一一摸出来放在一直线上的a+b个位置上,把所有的不同的排法作为基本事件的全体,则全体基本事件的总数为(a+b)!,而有利事件数为a(a+b-1)!故所求概率为P=。

解法二:把a只黑球和b只白球看作是不同的,将前k次摸球的所有不同可能作为基本事件全体,总数为,有利事件为,故所求概率为P=

解法三:把只考虑k次摸出球的每一种可能作为基本事件,总数为a+b,有利事件为a,故所求概率为.

备用课时   互斥事件有一个发生的概率

 

例题

例1 房间里有6个人,求至少有2个人的生日在同一月内的概率.

解  6个人生日都不在同一月内的概率P()=.故所求概率为P(A)=1-P()=1-.

 

例2 从一副52张的扑克牌中任取4张,求其中至少有两张牌的花色相同的概率。

解法1 任取四张牌,设至少有两张牌的花色相同为事件A;四张牌是同一花色为事件B1;有3张牌是同一花色,另一张牌是其他花色为事件B2;每两张牌是同一花色为事件B3;只有两张牌是同一花色,另两张牌分别是不同花色为事件B4,可见,B1,B2,B3,B4彼此互斥,且A=B1+B2+B3+B4

P(B1)= , P(B2)= ,

   P(B3)= , P(B4)= ,

试题详情

(3)由于骰子是均匀的,将它向桌面先后抛掷2次的所有36种结果是等可能的,其中“向上的数之积是12”这一事件记为A.Card(A)=4.所以所求概率P(A)= =.

 

作业

试题详情


同步练习册答案