0  7719  7727  7733  7737  7743  7745  7749  7755  7757  7763  7769  7773  7775  7779  7785  7787  7793  7797  7799  7803  7805  7809  7811  7813  7814  7815  7817  7818  7819  7821  7823  7827  7829  7833  7835  7839  7845  7847  7853  7857  7859  7863  7869  7875  7877  7883  7887  7889  7895  7899  7905  7913  447090 

解:1.读题:问题涉及耕地面积、粮食单产、人均粮食占有量、总人口数及三个百分率,其中人均粮食占有量P=,  主要关系是:P≥P .

试题详情

例1.(1996年全国高考题)某地现有耕地10000公顷,规划10年后粮食单产比现有增加22%,人均粮食产量比现在提高10%,如果人口年增长率为1%,那么耕地每年至多只能减少多少公顷(精确到1公顷)?

(粮食单产=  ;    人均粮食产量=)

分析:此题以关系国计民生的耕地、人口、粮食为背景,给出两组数据,要求考生从两条线索抽象数列模型,然后进行比较与决策.

试题详情

4.在近几年高考中,经常涉及的数学模型,有以下一些类型:数列模型、函数模型、不等式模型、三角模型、排列组合模型等等.

Ⅰ.函数模型  函数是中学数学中最重要的一部分内容,现实世界中普遍存在着的最优化问题,常常可归结为函数的最值问题,通过建立相应的目标函数,确定变量的限制条件,运用函数知识和方法去解决.
    ⑴ 根据题意,熟练地建立函数模型;

⑵ 运用函数性质、不等式等知识处理所得的函数模型.

Ⅱ.几何模型  诸如航行、建桥、测量、人造卫星等涉及一定图形属性的应用问题,常常需要应用几何图形的性质,或用方程、不等式或用三角函数知识来求解.
     Ⅲ.数列模型  在经济活动中,诸如增长率、降低率、存款复利、分期付款等与年(月)份有关的实际问题,大多可归结为数列问题,即通过建立相应的数列模型来解决.在解应用题时,是否是数列问题一是看自变量是否与正整数有关;二是看是否符合一定的规律,可先从特殊的情形入手,再寻找一般的规律.

试题详情

3.求解应用题的一般步骤是(四步法):

(1)、读题:读懂和深刻理解,译为数学语言,找出主要关系;

(2)、建模:把主要关系近似化、形式化,抽象成数学问题;

(3)、求解:化归为常规问题,选择合适的数学方法求解;

(4)、评价:对结果进行验证或评估,对错误加以调节,最后将结果应用于现实,作出解释或验证.

试题详情

2.应用问题的“考试要求”是考查考生的应用意识和运用数学知识与方法来分析问题解决问题的能力,这个要求分解为三个要点:

(1)、要求考生关心国家大事,了解信息社会,讲究联系实际,重视数学在生产、生活及科学中的应用,明确“数学有用,要用数学”,并积累处理实际问题的经验.

(2)、考查理解语言的能力,要求考生能够从普通语言中捕捉信息,将普通语言转化为数学语言,以数学语言为工具进行数学思维与交流.

(3)、考查建立数学模型的初步能力,并能运用“考试大纲”所规定的数学知识和方法来求解.

试题详情

例5.(2004年天津卷理22)椭圆的中心是原点O,它的短轴长为,相应于焦点F(c,0)()的准线与x轴相交于点A,|OF|=2|FA|,过点A的直线与椭圆相交于P、Q两点.

  (1)求椭圆的方程及离心率;

(2)若,求直线PQ的方程;

(3)设(),过点P且平行于准线的直线与椭圆相交于另一点M,证明.

分析:本小题主要考查椭圆的标准方程和几何性质,直线方程,平面向量的计算,曲线和方程的关系等解析几何的基本思想方法和综合解题能力.

(1)解:由题意,可设椭圆的方程为.

  由已知得解得

所以椭圆的方程为,离心率.

(2)解:由(1)可得A(3,0).

设直线PQ的方程为.由方程组

       得

依题意,得.

设,则,   ① .    ②

由直线PQ的方程得.于是

.    ③

∵,∴.    ④

由①②③④得,从而.

所以直线PQ的方程为或

(2)证明:.由已知得方程组

  注意,解得

因,故

.

而,所以.

由于向量具有几何形式和代数形式的“双重身份”,使向量与解析几何之间有着密切联系,而新课程高考则突出了对向量与解析几何结合考查,这就要求我们在平时的解析几何教学与复习中,应抓住时机,有效地渗透向量有关知识,树立应用向量的意识。应充分挖掘课本素材,在教学中从推导有关公式、定理,例题讲解入手,让学生去品位、去领悟,在公式、定理的探索、形成中逐渐体会向量的工具性,逐渐形成应用向量的意识,在教学中还应注重引导学生善于运用一些问题的结论,加以引申,使之成为解题方法,体会向量解题的优越性,在教学中还应注重引导学生善于运用向量方法解题,逐步树立运用向量知识解题的意识。

试题详情

例4、(2003年天津)已知常数,向量,经过原点以为方向向量的直线与经过定点以为方向向量的直线相交于点,其中.试问:是否存在两个定点,使得为定值,若存在,求出的坐标;若不存在,说明理由.

(本小题主要考查平面向量的概念和计算,求轨迹的方法,椭圆的方程和性质,利用方程判定曲线的性质,曲线与方程的关系等解析几何的基本思想和综合解题能力.)

解:根据题设条件,首先求出点P坐标满足的方程,据此再判断是否存在两定点,使得点P到两定点距离的和为定值.

∵,  ∴=(λ,a),=(1,-2λa).

因此,直线OP和AP的方程分别为   和 .

消去参数λ,得点的坐标满足方程.

整理得  ……①       因为所以得:

(i)当时,方程①是圆方程,故不存在合乎题意的定点E和F;

   (ii)当时,方程①表示椭圆,焦点和为合乎题意的两个定点;

   (iii)当时,方程①也表示椭圆,焦点和为合乎题意的两个定点.

点评:本题以平面向量为载体,考查求轨迹的方法、利用方程判定曲线的性质、曲线与方程的关系等解析几何的基本思想和综合解题能力。去掉平面向量的背景,我们不难看到,本题即为下题:

在△OAP中,O(0,0)、A(0,a)为两个定点,另两边OP与AP的斜率分别是,求P的轨迹。

而课本上有一道习题(数学第二册(上)第96页练习题4):

三角形ABC的两个顶点A、B的坐标分别是(-6,0)、(6,0),边AC、BC所在直线的斜率之积等于,求顶点C的轨迹方程。通过本例可见高考题目与课本的密切关系。

试题详情

例3、(2003年天津高考题)O是平面上一定点,ABC是平面上不共线的三个点,动点P满足,,则P的轨迹一定通过△ABC的(  )

(A)外心      (B)内心     (C)重心     (D)垂心

分析:因为同向的单位向量,由向量加法的平行四边形则知是与∠ABC的角平分线(射线)同向的一个向量,又,知P点的轨迹是∠ABC的角平分线,从而点P的轨迹一定通过△ABC的内心。

反思:根据本题的结论,我们不难得到求一个角的平分线所在的直线方程的步骤;

(1)       由顶点坐标(含线段端点)或直线方程求得角两边的方向向量;

(2)       求出角平分线的方向向量

(3)       由点斜式或点向式得出角平分线方程。{直线的点向式方程:过P(),其方向向量为,其方程为}

试题详情

例2、已知定点A(-1,0)和B(1,0),P是圆(x-3)2+(y-4)2=4上的一动点,求的最大值和最小值。

分析:因为O为AB的中点,所以故可利用向量把问题转化为求向量的最值。

解:设已知圆的圆心为C,由已知可得:

又由中点公式得

所以

             =

             =

             =

又因为 点P在圆(x-3)2+(y-4)2=4上,                                 

所以  且                                                                

所以

即  故

所以的最大值为100,最小值为20。

点评:有些解几问题虽然没有直接用向量作为已知条件出现,但如果运用向量知识来解决,也会显得自然、简便,而且易入手。

试题详情


同步练习册答案