20.(本小题满分12分)
水库的蓄水量随时间而变化,现用表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于的近似函数关系式为
(Ⅰ)该水库的蓄求量小于50的时期称为枯水期.以表示第1月份(),同一年内哪几个月份是枯水期?
(Ⅱ)求一年内该水库的最大蓄水量(取计算).
解:本小题主要考查函数、导数和不等式等基本知识,考查用导数求最值和综合运用数学知识解决实际问题能力.(满分12分)
(Ⅰ)①当时,,化简得,
解得,或,又,故.
②当时,,化简得,
解得,又,故.
综合得,或;
故知枯水期为1月,2月,3月,11月,12月共5个月.
(Ⅱ)(Ⅰ)知:V(t)的最大值只能在(4,10)内达到.
由V′(t)=
令V′(t)=0,解得t=8(t=-2舍去).
当t变化时,V′(t) 与V (t)的变化情况如下表:
t
(4,8)
8
(8,10)
V′(t)
+
0
-
V(t)
得(1-k2)x2-4kx-6=0.
∵直线l与双曲线C相交于不同的两点E、F,
∴.
. ②
设E(x1,y1),F(x2,y2),则由①式得
|x1-x2|= ③
当E、F在同一去上时(如图1所示),
S△OEF=
当E、F在不同支上时(如图2所示).
S△ODE=
综上得S△OEF=于是
由|OD|=2及③式,得S△OEF=
若△OEF面积不小于2
④
综合②、④知,直线l的斜率的取值范围为
(Ⅱ)解法1:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理得(1-k2)x2-4kx-6=0.
∵直线l与双曲线C相交于不同的两点E、F,
②
设E(x,y),F(x2,y2),则由①式得x1+x2=,于是
|EF|=
=
而原点O到直线l的距离d=,
∴S△DEF=
若△OEF面积不小于2,即S△OEF,则有
③
综合②、③知,直线l的斜率的取值范围为
解法2:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,
|AB|=4.
∴曲线C是以原点为中心,A、B为焦点的双曲线.
设双曲线的方程为>0,b>0).
解得a2=b2=2,
∴曲线C的方程为
则c=2,2a=2,∴a2=2,b2=c2-a2=2.
∴曲线C的方程为.
解法2:同解法1建立平面直角坐标系,则依题意可得|MA|-|MB|=|PA|-|PB|<
|MA|-|MB|=|PA|-|PB|=<|AB|=4.
∴曲线C是以原点为中心,A、B为焦点的双曲线.
设实平轴长为a,虚半轴长为b,半焦距为c,
19.(本小题满分13分)
如图,在以点为圆心,为直径的半圆中,,是半圆弧上一点,
,曲线是满足为定值的动点的轨迹,且曲线过点.
(Ⅰ)建立适当的平面直角坐标系,求曲线的方程;
(Ⅱ)设过点的直线l与曲线相交于不同的两点、.
若△的面积不小于,求直线斜率的取值范围.
解:本小题主要考查直线、圆和双曲线等平面解析几何的基础知识,考查轨迹方程的求法、不等式的解法以及综合解题能力.(满分13分)
(Ⅰ)解法1:以O为原点,AB、OD所在直线分别为x轴、y轴,建立平面直角坐标系,则A(-2,0),B(2,0),D(0,2),P(),依题意得
18.(本小题满分12分)
如图,在直三棱柱中,平面侧面.
(Ⅰ)求证:;
(Ⅱ)若直线与平面所成的角为,二面角的大小为,试判断与的大小关系,并予以证明.
解:本小题主要考查直棱柱、直线与平面所成角、二面角和线面关系等有关知识,同时考查空间想象能力和推理能力.(满分12分)
(Ⅰ)证明:如右图,过点A在平面A1ABB1内作
AD⊥A1B于D,则
由平面A1BC⊥侧面A1ABB1,且平面A1BC侧面A1ABB1=A1B,得
AD⊥平面A1BC,又BC平面A1BC,
所以AD⊥BC.
因为三棱柱ABC―A1B1C1是直三棱柱,
则AA1⊥底面ABC,
所以AA1⊥BC.
又AA1AD=A,从而BC⊥侧面A1ABB1,
又AB侧面A1ABB1,故AB⊥BC.
(Ⅱ)解法1:连接CD,则由(Ⅰ)知是直线AC与平面A1BC所成的角,
是二面角A1―BC―A的平面角,即
于是在Rt△ADC中,在Rt△ADB中,
由AB<AC,得又所以
解法2:由(Ⅰ)知,以点B为坐标原点,以BC、BA、BB1所在的直线分
别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,设AA1=a,AC=b,
AB=c,则 B(0,0,0), A(0,c,0), 于是
设平面A1BC的一个法向量为n=(x,y,z),则
由得
可取n=(0,-a,c),于是与n的夹角为锐角,则与互为余角.
所以
于是由c<b,得
即又所以
当a=-2时,由1=-2×1.5+b,得b=4.
∴或即为所求.
当a=2时,由1=2×1.5+b,得b=-2;
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com