精英家教网 > 初中数学 > 题目详情
若a ,b ,c为△ABC的三边,且关于x的二次三项式为完全平方式,则△ABC是

A、直角三角形
B、等边三角形
C、等腰直角三角形
D、只有两边相等的等腰三角形
相关习题

科目:初中数学 来源:2009-2010学年湖北省孝感市肖港初中九年级(上)第一次月考数学试卷(解析版) 题型:选择题

若a,b,c为△ABC的三边,且关于x的二次三项式x2+2(a+b+c)x+3(ab+bc+ca)为完全平方式,则△ABC是( )
A.直角三角形
B.等边三角形
C.等腰直角三角形
D.只有两边相等的等腰三角形

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

若a,b,c为△ABC的三边,且关于x的二次三项式x2+2(a+b+c)x+3(ab+bc+ca)为完全平方式,则△ABC是


  1. A.
    直角三角形
  2. B.
    等边三角形
  3. C.
    等腰直角三角形
  4. D.
    只有两边相等的等腰三角形

查看答案和解析>>

科目:初中数学 来源:湖北省月考题 题型:单选题

若a,b,c为△ABC的三边,且关于x的二次三项式x2+2(a+b+c)x+3(ab+bc+ca)为完全平方式,则△ABC是
[     ]
A.直角三角形
B.等边三角形
C.等腰直角三角形
D.只有两边相等的等腰三角形

查看答案和解析>>

科目:初中数学 来源:湖北省期末题 题型:单选题

若a ,b ,c为△ABC的三边,且关于x的二次三项式为完全平方式,则△ABC是
[     ]
A、直角三角形
B、等边三角形
C、等腰直角三角形
D、只有两边相等的等腰三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以△ABC的边AC为直径的半圆交AB于D,三边长a,b,c能使二次函数y=
1
2
(c+a)x2-bx+
1
2
(c-a)
的顶点在x轴上,且a是方程z2+z-20=0的一个根.
(1)证明:∠ACB=90°;
(2)若设b=2x,弓形面积S弓形AED=S1,阴影部分面积为S2,求(S2-S1)与x的函数关系式;
(3)在(2)的条件下,当b为何值时,(S2-S1)最大?

查看答案和解析>>

科目:初中数学 来源:2013年江苏省盐城市盐都区中考数学一模试卷(解析版) 题型:解答题

已知二次函数y=ax2+bx-2的图象与x轴交于A、B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.
(1)求实数a、b的值;
(2)如图1,动点E、F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.
①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由.
②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式;

查看答案和解析>>

科目:初中数学 来源:2012年河南省重点中学中考数学模拟试卷(6月份)(解析版) 题型:解答题

已知二次函数y=ax2+bx-2的图象与x轴交于A、B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.
(1)求实数a、b的值;
(2)如图1,动点E、F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.
①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由.
②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式;

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数y=ax2+bx-2的图象与x轴交于A、B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.
(1)求实数a、b的值;
(2)如图1,动点E、F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒数学公式个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.
①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由.
②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式;

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,以△ABC的边AC为直径的半圆交AB于D,三边长a,b,c能使二次函数y=
1
2
(c+a)x2-bx+
1
2
(c-a)
的顶点在x轴上,且a是方程z2+z-20=0的一个根.
(1)证明:∠ACB=90°;
(2)若设b=2x,弓形面积S弓形AED=S1,阴影部分面积为S2,求(S2-S1)与x的函数关系式;
(3)在(2)的条件下,当b为何值时,(S2-S1)最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax2+bx+3的图象与x轴相交于点A、C,与y轴相交于点B,A(-
94
,0
),且△AOB∽△BOC.
(1)求C点坐标、∠ABC的度数及二次函数y=ax2+bx+3的关系式;
(2)在线段AC上是否存在点M(m,0).使得以线段BM为直径的圆与边BC交于P点(与点B不精英家教网同),且以点P、C、O为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案