精英家教网 > 初中数学 > 题目详情
“a,b两数的平方和不是负数”用不等式表示为(     )。

A.a2+b2≥0
B.a2+b2>0
C.(a+b)2≥0
相关习题

科目:初中数学 来源:期末题 题型:填空题

“a,b两数的平方和不是负数”用不等式表示为(     )。

查看答案和解析>>

科目:初中数学 来源:新教材完全解读 七年级数学 (下册) (配人教版新课标) (第1次修订版) 配人教版新课标 题型:044

用不等式表示下列语句.

(1)a是正数;

(2)b是非负数;

(3)a,b两数的平方和的2倍再加上c不小于10;

(4)a与b的和不是正数;

(5)a与b的和的绝对值不大于a与b的绝对值的和.

查看答案和解析>>

科目:初中数学 来源: 题型:

填空:
(1)用不等式表示;①a的一半与4的差是负数
;②x,y两数的平方和不大于2

(2)用“>”或“<”填空:①若a>b,则-2a-3
-2b-3;②若a>0,b<0,c<0,则(a-b)c
0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

填空:
(1)用不等式表示;①a的一半与4的差是负数______;②x,y两数的平方和不大于2______.
(2)用“>”或“<”填空:①若a>b,则-2a-3______-2b-3;②若a>0,b<0,c<0,则(a-b)c______0.

查看答案和解析>>

科目:初中数学 来源: 题型:

图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.

(1)你认为图2中的阴影部分的正方形的边长等于
m-n
m-n

(2)请用两种不同的方法求图2中阴影部分的面积.
(m-n)2
(m-n)2

(m+n)2-4mn
(m+n)2-4mn

(3)观察图2你能写出下列三个代数式之间的等量关系吗?
(m+n)2,(m-n)2,mn
(m-n)2=(m+n)2-4mn
(m-n)2=(m+n)2-4mn

(4)运用你所得到的公式,计算若mn=-2,m-n=4,求(m+n)2的值.
(5)用完全平方公式和非负数的性质求代数式x2+2x+y2-4y+7的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.

(1)你认为图2中的阴影部分的正方形的边长等于______?
(2)请用两种不同的方法求图2中阴影部分的面积.
①______;
②______.
(3)观察图2你能写出下列三个代数式之间的等量关系吗?
(m+n)2,(m-n)2,mn______.
(4)运用你所得到的公式,计算若mn=-2,m-n=4,求(m+n)2的值.
(5)用完全平方公式和非负数的性质求代数式x2+2x+y2-4y+7的最小值.

查看答案和解析>>

科目:初中数学 来源:三点一测丛书八年级数学上 题型:044

等式中找规律

  孙海洋是个爱动脑筋的八年级学生,他特别喜欢数学,一有空就看数学课外书,并琢磨书上的问题.有一次,他从一本书中看到了下面一个有趣的问题:

  仔细观察下面4个等式:

  32=2+22+3

  42=3+32+4

  52=4+42+5

  62=5+52+6

  ……

  请写出第5个等式,由此能发现什么规律?用公式将发现的规律表示出来.

  对这个问题,孙海洋感到很新奇,他认真分析题目给出的4个等式,发现有以下一些结构特征:

  (1)每个等式的左边都是一个自然数的平方,等式的右边都是3个数的和.

  (2)4个等式的左边依次是32、42、52、62,它们的底数3、4、5、6是4个连续的自然数,其大小均比所处等式的序号多2.

  (3)每个等式右边的3个加数也有明显的规律.

  第1个加数和第3个加数是两个连续的自然数,并且第3个加数等于该等式左边平方数的底数,第2个加数也是一个平方数,底数等于第1个加数.

  根据以上规律,孙海洋猜想第5个等式应该是72=6+62+7.

  孙海洋进一步归纳了这5个等式的规律,用公式表示为(n+1)2=n+n2+(n+1)…①其中n=2,3,…

  如果将①式右边变形、左边不变,那么可得(n+1)2=n2+2n+1…②

  等式②多么眼熟啊!它不就是完全平方公式的一个具体应用吗?由此可见,孙海洋同学归纳的规律是正确的.

想一想,当n=0,1时,等式①是否成立?当n为负整数时,等式①是否成立?

查看答案和解析>>


同步练习册答案