精英家教网 > 初中数学 > 题目详情
如图,在直线上顺次取A、B、C、D四点,则AC=AB+BC=AD-(    )


A.AD
B.CD
C.BD
相关习题

科目:初中数学 来源:专项题 题型:填空题

如图,在直线上顺次取A、B、C、D四点,则AC=(    )+BC=AD-(    ),AC+BD- BC=(    )。

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图,在直线I上顺次取A、B、C、D四点,则AC=
AB
+BC=AD-
CD
,AC+BD-BC=
AD

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,在直线I上顺次取A、B、C、D四点,则AC=________+BC=AD-________,AC+BD-BC=________.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某课外兴趣小组在一次折纸活动中,折叠一张带有条格的长方形纸片ABCD(如图1),将点B分别与点A,A1,A2,…,D重合,然后用笔分别描出每条折痕与对应条格所在直线的交点,用平滑的曲线顺次连接各交点,得到一条曲线.
探索
如图2,在平面直角坐标系xOy中,将长方形纸片ABCD的顶点B与原点O重合,BC边放在x轴的正半轴上,AB=m,AD=n(m≤n),将纸片折叠,MN是折痕,使点B落在边AD上的E处,过点E作EQ⊥BC,垂足为Q,交直线MN于点P,连接OP
(1)求证:四边形OMEP是菱形;
(2)设点P坐标为(x,y),求y与x之间的函数关系式,并写出自变量x的取值范围.(用含m、n的式子表示)
运用
(3)将长方形纸片ABCD如图3所示放置,AB=8,AD=12,将纸片折叠,当点B与点D重合时,折痕与DC的延长线交于点F.试问在这条折叠曲线上是否存在K,使得△KCF的面积是△KOC面积的数学公式,若存在,写出点K的坐标;若不存在,请说明理由.
作业宝

查看答案和解析>>

科目:初中数学 来源: 题型:

综合实践
问题背景
某课外兴趣小组在一次折纸活动中,折叠一张带有条格的长方形纸片ABCD(如图1),将点B分别与点A,A1,A2,…,D重合,然后用笔分别描出每条折痕与对应条格所在直线的交点,用平滑的曲线顺次连接各交点,得到一条曲线.
探索
如图2,在平面直角坐标系xOy中,将长方形纸片ABCD的顶点B与原点O重合,BC边放在x轴的正半轴上,AB=m,AD=n(m≤n),将纸片折叠,MN是折痕,使点B落在边AD上的E处,过点E作EQ⊥BC,垂足为Q,交直线MN于点P,连接OP
(1)求证:四边形OMEP是菱形;
(2)设点P坐标为(x,y),求y与x之间的函数关系式,并写出自变量x的取值范围.(用含m、n的式子表示)
运用
(3)将长方形纸片ABCD如图3所示放置,AB=8,AD=12,将纸片折叠,当点B与点D重合时,折痕与DC的延长线交于点F.试问在这条折叠曲线上是否存在K,使得△KCF的面积是△KOC面积的
53
,若存在,写出点K的坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源:2010年江苏省镇江市扬中市外国语学校中考数学一模试卷(解析版) 题型:解答题

综合实践
问题背景
某课外兴趣小组在一次折纸活动中,折叠一张带有条格的长方形纸片ABCD(如图1),将点B分别与点A,A1,A2,…,D重合,然后用笔分别描出每条折痕与对应条格所在直线的交点,用平滑的曲线顺次连接各交点,得到一条曲线.
探索
如图2,在平面直角坐标系xOy中,将长方形纸片ABCD的顶点B与原点O重合,BC边放在x轴的正半轴上,AB=m,AD=n(m≤n),将纸片折叠,MN是折痕,使点B落在边AD上的E处,过点E作EQ⊥BC,垂足为Q,交直线MN于点P,连接OP
(1)求证:四边形OMEP是菱形;
(2)设点P坐标为(x,y),求y与x之间的函数关系式,并写出自变量x的取值范围.(用含m、n的式子表示)
运用
(3)将长方形纸片ABCD如图3所示放置,AB=8,AD=12,将纸片折叠,当点B与点D重合时,折痕与DC的延长线交于点F.试问在这条折叠曲线上是否存在K,使得△KCF的面积是△KOC面积的,若存在,写出点K的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年福建省龙岩市长汀县河田二中中考数学模拟试卷(解析版) 题型:解答题

综合实践
问题背景
某课外兴趣小组在一次折纸活动中,折叠一张带有条格的长方形纸片ABCD(如图1),将点B分别与点A,A1,A2,…,D重合,然后用笔分别描出每条折痕与对应条格所在直线的交点,用平滑的曲线顺次连接各交点,得到一条曲线.
探索
如图2,在平面直角坐标系xOy中,将长方形纸片ABCD的顶点B与原点O重合,BC边放在x轴的正半轴上,AB=m,AD=n(m≤n),将纸片折叠,MN是折痕,使点B落在边AD上的E处,过点E作EQ⊥BC,垂足为Q,交直线MN于点P,连接OP
(1)求证:四边形OMEP是菱形;
(2)设点P坐标为(x,y),求y与x之间的函数关系式,并写出自变量x的取值范围.(用含m、n的式子表示)
运用
(3)将长方形纸片ABCD如图3所示放置,AB=8,AD=12,将纸片折叠,当点B与点D重合时,折痕与DC的延长线交于点F.试问在这条折叠曲线上是否存在K,使得△KCF的面积是△KOC面积的,若存在,写出点K的坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案