精英家教网 > 初中数学 > 题目详情
如图所示,D、E分别是AB、BC的中点,其中AD=2,BC=6,则DE=(      )。


A.3
B.4
C.5
D.6
相关习题

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分精英家教网别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,-
2
3
)

(1)求抛物线的解析式.
(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同
时点Q由点B出发沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2
①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;
②当S取
5
4
时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.
(1)求抛物线的解析式.
(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.
①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.
②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图所示,△ABC中,AB=AC,AD⊥BC交D点,E、F分别是DB、DC的中点,则图中全等三角形的对数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,D,E分别是AB,AC的中点,且AB=10,AC=14,BC=16,则DE等于(  )
A、5B、7C、8D、12

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图所示,等腰△ABC中,P为底边BC上任意一点,过P作两腰的平行线分别与AB、AC相交于Q、R两点,又P′是P关于直线RQ的对称点.证明:△P′QB∽△P′RC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,矩形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,AH为BC边上的高,AH交DG于点P,已知AH=3,BC=5;
(1)设DG的长为x,矩形DEFG面积为y,求y关于x的函数解析式及其定义域;
(2)根据(1)中所得y关于x的函数图象,求当矩形DEFG面积最大时,DG的长为多少?矩形DEFG面积是多少?精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,△ABC中,AH⊥BC于H,E,D,F分别是AB,BC,AC的中点,则四边形EDHF是(  )
A、一般梯形B、等腰梯形C、直角梯形D、直角等腰梯形

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图所示,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD,等边△ACE、等边△BCF.
(1)求证:四边形DAEF是平行四边形;
(2)探究下列问题:(只填满足的条件,不需证明)
①当△ABC满足
∠BAC=150°
条件时,四边形DAEF是矩形;
②当△ABC满足
AB=AC≠BC
条件时,四边形DAEF是菱形;
③当△ABC满足
∠BAC=60°
条件时,以D、A、E、F为顶点的四边形不存在.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,请添加一个与四边形ABCD对角线有关的条件
 
,使四边形EFGH是特殊的平行四边形为
 
形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在长方形ABCD中,E、F分别是AB、BC上的点,且BE=12,BF=16,则由点E到F的最短距离为(  )
A、20B、24C、28D、32

查看答案和解析>>


同步练习册答案