精英家教网 > 初中数学 > 题目详情
若∠α+∠β=90°,∠β+∠γ=90°,则∠α与∠γ的关系是(     )。

A.相等
B.互补
C.互余
相关习题

科目:初中数学 来源:北京期末题 题型:解答题

小知识:如图,我们称两臂长度相等(即CA=CB)的圆规为等臂圆规。当等臂圆规的两脚摆放在一条直线上时,若张角∠ACB=x°,则底角∠CAB=∠CBA=(90-)°请运用上述知识解决问题: 如图,n个相同规格的等臂圆规的两脚依次摆放在同一条直线上,其张角度数变化如下:
∠A1C1A2=160°,∠A2C2A3=80°,∠A3C3A4=40°,∠A4C4A5=20°,…

 
(1)①由题意可得∠A1A2C1=_________;
②若A2M平分∠A3A2C1,则∠MA2C2=__________;
(2)∠An+1AnCn____________;(用含n的代数式表示)
(3)当n≥3时,设∠An-1AnCn-1的度数为,∠An+1AnCn-1的角平分线AnM与AnCn构成的角的度数为,那么之间的等量关系是__________,请说明理由。(提示:可以借助下面的局部示意图)

查看答案和解析>>

科目:初中数学 来源: 题型:

四边形ABCD是正方形(正方形四边相等,四个角都是90°),BFAG于点FDEAG于点E

 (1)如图1,若点GBC边上时(不与点BC重合),求证:△ABF≌△DAE

(2)直接写出(1)中,线段EFAFBF的等量关系是               

(3)①如图2,若点GCD边上时(不与点CD重合),则图中全等三角形是               ,线段EFAFBF的等量关系是               

②如图3,若点G在CD延长线上时,线段EFAFBF的等量关系是               

(4)请画图、探究点G在BC延长线上时,线段EFAFBF的等量关系是                ;(直接写出结果,不必证明)。


查看答案和解析>>

科目:初中数学 来源:山西省中考真题 题型:解答题

如图,△ABC是直角三角形,∠ACB=90°。
(1)实践与操作利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法)
①作△ABC的外接圆,圆心为O;
②以线段AC为一边,在AC的右侧作等边△ACD;
③连接BD,交⊙O于点F,连接AE;
(2)综合与运用在你所作的图中,若AB=4,BC=2,则:
①AD与⊙O的位置关系是____;
②线段AE的长为____。

查看答案和解析>>

科目:初中数学 来源:重庆市模拟题 题型:解答题

把两块全等的直角三角形ABC和DEF 叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O 重合,其中∠ABC=∠DEF=90,∠C=∠F=45,AB=DE=4把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q。
(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ,此时AP﹒CQ的值为(    )。将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α。 其中0<α<90 ,则 AP﹒CQ的值是否会改变?答:(   )(填“会”或“不会”)此时AP﹒CQ的值为(     )(不必说明理由)
(2)在(1)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2、图3供解题用)
(3)在(1)的条件下,PQ能否与AC平行?若能,求出y的值;若不能,试说明理由。

查看答案和解析>>

科目:初中数学 来源:山西省中考真题 题型:解答题

如图,△ABC是直角三角形,∠ACB=90°。
(1)实践与操作 利用尺规按下列要求作图,并在图中标明相应的字母;(保留作图痕迹,不写作法)
①作△ABC的外接圆,圆心为O;
②以线段AC为一边,在AC的右侧作等边△ACD;
③连接BD,交⊙O于点F,连接AE。
(2)综合与运用 在你所作的图中,若AB=4,BC=2,则:
①AD与⊙O的位置关系是________;
②线段AE的长为__________。

查看答案和解析>>

科目:初中数学 来源:广东省中考真题 题型:解答题

在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征。比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:(m、n都是正整数),我们亦知:
(1)请你根据上面的材料归纳出a、b、c(a>b>0,c>0)之间的一个数学关系式;
(2)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”;
(3)如图,在Rt△ABC中,∠C=90°,CB=a,CA=b,AD=BE=c(a>b),能否根据这个图形提炼出与(1)中相同的关系式并给予证明。

查看答案和解析>>

科目:初中数学 来源:北京期末题 题型:解答题

小知识:如图,我们称两臂长度相等(即CA=CB)的圆规为等臂圆规,当等臂圆规的两脚摆放在一条直线上时,若张角∠ACB=x°,则底角∠CAB=∠CBA=(90-)°,
请运用上述知识解决问题:
如图,n个相同规格的等臂圆规的两脚依次摆放在同一条直线上,其张角度数变化如下:
(1)①由题意可得=____°;
②若,则=____°;
(2)=____°(用含n的代数式表示);
(3)当n≥3时,设的度数为a,的角平分线构成的角的度数为β,那么α与β之间的等量关系是____,请说明理由。(提示:可以借助上面的局部示意图)

查看答案和解析>>

科目:初中数学 来源:浙江省模拟题 题型:解答题

定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形。
探究:(1)如图甲,已知△ABC中∠C=90 °,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由。
(2)一般地,“任意三角形都是自相似图形”,只要顺次连结三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形,我们把△DEF(图乙)第一次顺次连结各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连结它的各边中点所进行的分割,称为2阶分割(如图2)……依次规则操作下去,n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为Sn
①若△DEF的面积为1000,当n为何值时,3<Sn<4?
②当n>1时,请写出一个反映Sn-1,Sn,Sn+1之间关系的等式(不必证明)

查看答案和解析>>


同步练习册答案