精英家教网 > 初中数学 > 题目详情
中,CD是斜边AB上的高,BC=3,AC=4,则CD=(     )

A.
B.
C.
D.
相关习题

科目:初中数学 来源:专项题 题型:填空题

中,CD是斜边AB上的高,BC=3,AC=4,则CD=(     ),BD=(     )。

查看答案和解析>>

科目:初中数学 来源:期末题 题型:解答题

在Rt△ABC中,CD是斜边AB上的高且BC=,AC=2,求AB及CD的长。

查看答案和解析>>

科目:初中数学 来源:中考数学专项练习 题型:013

在△ABC中,CD是斜边AB上的高,若AC∶BC=1∶,则△ADC和△CDB面积的比为

[  ]

A.1∶
B.1∶3
C.1∶4
D.2∶3

查看答案和解析>>

科目:初中数学 来源: 题型:022

在Rt△ABC中,CD是斜边AB上的高,且AC=6cm,BC=8cm,则当以点D为圆心的圆的半径r=________cm时,⊙D与AC相切;r满足条件r________cm时,⊙D与AC相离;r满足条件r________cm时,⊙D与BC相切;r满足条件r________cm时,⊙D与BC相交.

查看答案和解析>>

科目:初中数学 来源: 题型:

Rt△ABC中,∠ACB=90°,BC=15,AC=20.CD为斜边AB上的高.矩形EFGH的边EF与CD重合,A、D、B、G在同一直线上(如图1).将矩形EFGH向左边平移,EF交AC于M(M不与A重合,如图2),连接BM,BM交CD于N,连接NF.
(1)直接写出图2中所有与△CDB相似的三角形;
(2)设CE=x,△MNF的面积为y,求y与x的函数关系式,写出自变量x的取值范围,并求△MNF的最大面积;
(3)在平移过程中是否存在四边形MFNC为平行四边形的情形?若存在,求出x的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.

(1)求线段AD的长;

(2)若EF⊥AB,当点E在线段AB上移动时,

①求y与x的函数关系式(写出自变量x的取值范围)

②当x取何值时,y有最大值?并求其最大值;

(3)若F在直角边AC上(点F与A、C两点均不重合),点E在斜边AB上移动,试问:是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.
(1)求线段AD的长;
(2)若EF⊥AB,当点E在线段AB上移动时,
①求y与x的函数关系式(写出自变量x的取值范围)
②当x取何值时,y有最大值?并求其最大值;
(3)若F在直角边AC上(点F与A、C两点均不重合),点E在斜边AB上移动,试问:是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年高级中等学校招生全国统一考试数学卷(江苏扬州) 题型:解答题

在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.
(1)求线段AD的长;
(2)若EF⊥AB,当点E在线段AB上移动时,
①求y与x的函数关系式(写出自变量x的取值范围)
②当x取何值时,y有最大值?并求其最大值;
(3)若F在直角边AC上(点F与A、C两点均不重合),点E在斜边AB上移动,试问:是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年高级中等学校招生全国统一考试数学卷(江苏常州) 题型:解答题

在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.

(1)求线段AD的长;

(2)若EF⊥AB,当点E在线段AB上移动时,

①求y与x的函数关系式(写出自变量x的取值范围)

②当x取何值时,y有最大值?并求其最大值;

(3)若F在直角边AC上(点F与A、C两点均不重合),点E在斜边AB上移动,试问:是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源:2013年吉林省白城市镇赉县胜利中学中考数学四模试卷(解析版) 题型:解答题

Rt△ABC中,∠ACB=90°,BC=15,AC=20.CD为斜边AB上的高.矩形EFGH的边EF与CD重合,A、D、B、G在同一直线上(如图1).将矩形EFGH向左边平移,EF交AC于M(M不与A重合,如图2),连接BM,BM交CD于N,连接NF.
(1)直接写出图2中所有与△CDB相似的三角形;
(2)设CE=x,△MNF的面积为y,求y与x的函数关系式,写出自变量x的取值范围,并求△MNF的最大面积;
(3)在平移过程中是否存在四边形MFNC为平行四边形的情形?若存在,求出x的值;若不存在,说明理由.

查看答案和解析>>


同步练习册答案