精英家教网 > 初中数学 > 题目详情
C是线段MN的中点,D是NC上一点,选项中错误的是

A.CD=MC-ND
B.CD=MN-ND
C.CD=NC
D.CD=MD-NC
相关习题

科目:初中数学 来源: 题型:单选题

C是线段MN的中点,D是NC上一点,选项中错误的是


  1. A.
    CD=MC-ND
  2. B.
    CD=数学公式MN-ND
  3. C.
    CD=数学公式NC
  4. D.
    CD=MD-NC

查看答案和解析>>

科目:初中数学 来源:湖北省同步题 题型:单选题

C是线段MN的中点,D是NC上一点,选项中错误的是(  )
[     ]
A.CD=MC﹣ND
B.CD=MN﹣ND
C.CD=NC
D.CD=MD﹣NC

查看答案和解析>>

科目:初中数学 来源:同步题 题型:单选题

C是线段MN的中点,D是NC上一点,选项中错误的是
[     ]
A.CD=MC-ND
B.CD=MN-ND
C.CD=NC
D.CD=MD-NC

查看答案和解析>>

科目:初中数学 来源: 题型:

如图△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.
探究:
(1)线段BM、MN、NC之间的数量关系.
(2)若点M、N分别是AB、CA延长线上的点,其它条件不变,再探线段BM、MN、NC之间的数量关系,在图中画出图形.并对以上两种探究结果选择一个你喜欢的加以证明.

查看答案和解析>>

科目:初中数学 来源:2008年河北省石家庄市第四十二中学中考数学模拟试卷(解析版) 题型:解答题

如图△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.
探究:
(1)线段BM、MN、NC之间的数量关系.
(2)若点M、N分别是AB、CA延长线上的点,其它条件不变,再探线段BM、MN、NC之间的数量关系,在图中画出图形.并对以上两种探究结果选择一个你喜欢的加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:044

操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交ABAC边于MN两点,连接MN

探究:线段BMMNNC之间的关系,并加以证明.

说明:⑴如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);⑵在你经历说明⑴的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.

注意:选取①完成证明得10分;选取②完成证明得5分.

(如图②);  ②(如图③).

附加题:若点MN分别是射线ABCA上的点,其它条件不变,再探线段BMMNNC之间的关系,在图④中画出图形,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年辽宁省大连市旅顺口区初中毕业升学统一考试试题数学试卷 题型:059

操作:如图,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN

探究:线段BM、MN、NC之间的关系,并加以证明.

说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);

(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.

注意:选取①完成证明得10分;选取②完成证明得5分.

①AN=NC(如图);

②DM∥AC(如图).

若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图中画出图形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

C是线段MN的中点,D是NC上一点,选项中错误的是(  )
A、CD=MC-ND
B、CD=
1
2
MN-ND
C、CD=
1
2
NC
D、CD=MD-NC

查看答案和解析>>

科目:初中数学 来源:辽宁省中考真题 题型:解答题

操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN。
探究:线段BM、MN、NC之间的关系,并加以证明。
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);
(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明。
①AN=NC(如图②);
②DM∥AC(如图③)。
附加题:若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图④中画出图形,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

24、操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.
探究:线段BM、MN、NC之间的关系,并加以证明.
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.
注意:选取①完成证明得10分;选取②完成证明得5分.
AN=NC(如图②);②DM∥AC(如图③).
附加题:若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图④中画出图形,并说明理由.

查看答案和解析>>


同步练习册答案