精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标是(1,2)。将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在双曲线上,则k的值为


A.2
B.3
C.4
D.6
相关习题

科目:初中数学 来源:吉林省期末题 题型:单选题

如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标是(1,2)。将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在双曲线上,则k的值为
[     ]
A.2
B.3
C.4
D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2)
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的表达式;
(3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2).
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2).
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的表达式.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(30):2.7 最大面积是多少(解析版) 题型:解答题

如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2)
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的表达式;
(3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO

查看答案和解析>>

科目:初中数学 来源:第34章《二次函数》中考题集(34):34.4 二次函数的应用(解析版) 题型:解答题

如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2)
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的表达式;
(3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(33):2.3 二次函数的应用(解析版) 题型:解答题

如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2)
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的表达式;
(3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO

查看答案和解析>>

科目:初中数学 来源:第6章《二次函数》中考题集(33):6.4 二次函数的应用(解析版) 题型:解答题

如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2)
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的表达式;
(3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO

查看答案和解析>>

科目:初中数学 来源:第27章《二次函数》中考题集(32):27.3 实践与探索(解析版) 题型:解答题

如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2)
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的表达式;
(3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO

查看答案和解析>>

科目:初中数学 来源:第26章《二次函数》中考题集(31):26.3 实际问题与二次函数(解析版) 题型:解答题

如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2)
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的表达式;
(3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO

查看答案和解析>>


同步练习册答案