精英家教网 > 初中数学 > 题目详情
如图,给出了过直线外一点画已知直线的平行线的方法,其依据是


A.同位角相等,两直线平行
B.内错角相等,两直线平行
C.同旁内角互补,两直线平行
D.两直线平行,同位角相等
相关习题

科目:初中数学 来源: 题型:

3、如图,给出了过直线外一点画已知直线的平行线的方法,其依据是(  )

查看答案和解析>>

科目:初中数学 来源:2008-2009学年九年级(上)数学第一次质量检测试卷(1~3章)(解析版) 题型:选择题

如图,给出了过直线外一点画已知直线的平行线的方法,其依据是( )

A.同位角相等,两直线平行
B.内错角相等,两直线平行
C.同旁内角互补,两直线平行
D.两直线平行,同位角相等

查看答案和解析>>

科目:初中数学 来源:江苏期末题 题型:单选题

如图,给出了过直线外一点画已知直线的平行线的方法,其依据是
[     ]
A.同位角相等,两直线平行
B.内错角相等,两直线平行
C.同旁内角互补,两直线平行
D.两直线平行,同位角相等

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《相交线与平行线》(01)(解析版) 题型:选择题

(2006•苏州)如图,给出了过直线外一点画已知直线的平行线的方法,其依据是( )

A.同位角相等,两直线平行
B.内错角相等,两直线平行
C.同旁内角互补,两直线平行
D.两直线平行,同位角相等

查看答案和解析>>

科目:初中数学 来源:2010年浙江省金华市兰溪市聚仁学校中考数学一模试卷(解析版) 题型:选择题

(2006•苏州)如图,给出了过直线外一点画已知直线的平行线的方法,其依据是( )

A.同位角相等,两直线平行
B.内错角相等,两直线平行
C.同旁内角互补,两直线平行
D.两直线平行,同位角相等

查看答案和解析>>

科目:初中数学 来源:2009年河北省中考数学模拟试卷(四)(解析版) 题型:选择题

(2006•苏州)如图,给出了过直线外一点画已知直线的平行线的方法,其依据是( )

A.同位角相等,两直线平行
B.内错角相等,两直线平行
C.同旁内角互补,两直线平行
D.两直线平行,同位角相等

查看答案和解析>>

科目:初中数学 来源:2006年江苏省苏州市中考数学试卷(解析版) 题型:选择题

(2006•苏州)如图,给出了过直线外一点画已知直线的平行线的方法,其依据是( )

A.同位角相等,两直线平行
B.内错角相等,两直线平行
C.同旁内角互补,两直线平行
D.两直线平行,同位角相等

查看答案和解析>>

科目:初中数学 来源: 题型:

23、我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)除了正方形外,写出你所学过的特殊四边形中是勾股四边形的两种图形的名称:
矩形、直角梯形

(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB,并写出点M的坐标;
(3)如图2,以△ABC的边AB,AC为边,向三角形外作正方形ABDE及ACFG,连接CE,BG相交于O点,P是线段DE上任意一点.求证:四边形OBPE是勾股四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

精英家教网九年义务教育三年制初级中学教科书代数第三册中,有以下几段文字:“对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y)和它对应;对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.”“一般地,对于一个函数,如果把自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.”“实际上,所有一次函数的图象都是一条直线.”“因为两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线,就可以了.”由此可知:满足函数关系式的有序实数对所对应的点,一定在这个函数的图象上;反之,函数图象上的点的坐标,一定满足这个函数的关系式.另外,已知直线上两点的坐标,便可求出这条直线所对应的一次函数的解析式.
问题1:已知点A(m,1)在直线y=2x-1上,求m的方法是:
 
,∴m=
 
;已知点B(-2,n)在直线y=2x-1上,求n的方法是:
 
,∴n=
 

问题2:已知某个一次函数的图象经过点P(3,5)和Q(-4,-9),求这个一次函数的解析式时,一般先
 
,再由已知条件可得
 
.解得:
 
.∴满足已知条件的一次函数的解析式为:
 
.这个一次函数的图象与两坐标轴的交点坐标为:
 
,在右侧给定的平面直角坐标系中,描出这两个点,并画出这个函数的图象.像解决问题2这样,
 
的方法,叫做待定系数法.

查看答案和解析>>

科目:初中数学 来源:1999年河北省中考数学试卷 题型:解答题

(1999•河北)九年义务教育三年制初级中学教科书代数第三册中,有以下几段文字:“对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y)和它对应;对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.”“一般地,对于一个函数,如果把自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.”“实际上,所有一次函数的图象都是一条直线.”“因为两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线,就可以了.”由此可知:满足函数关系式的有序实数对所对应的点,一定在这个函数的图象上;反之,函数图象上的点的坐标,一定满足这个函数的关系式.另外,已知直线上两点的坐标,便可求出这条直线所对应的一次函数的解析式.
问题1:已知点A(m,1)在直线y=2x-1上,求m的方法是:    ,∴m=    ;已知点B(-2,n)在直线y=2x-1上,求n的方法是:    ,∴n=   
问题2:已知某个一次函数的图象经过点P(3,5)和Q(-4,-9),求这个一次函数的解析式时,一般先    ,再由已知条件可得    .解得:    .∴满足已知条件的一次函数的解析式为:    .这个一次函数的图象与两坐标轴的交点坐标为:    ,在右侧给定的平面直角坐标系中,描出这两个点,并画出这个函数的图象.像解决问题2这样,    的方法,叫做待定系数法.

查看答案和解析>>


同步练习册答案