精英家教网 > 初中数学 > 题目详情
如图,ΔABC和ΔADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,ΔABC绕着A点经过逆时针旋转后能够与ΔADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图2。两次旋转的角度分别为

 


A.45°,90°
B.90°,45°
C.60°,30°
D.30°,60°
相关习题

科目:初中数学 来源: 题型:

10、如图,△ABC和△ADE都是等腰直角三角形,∠ACB和∠AED都是直角,点C在AD上,如果△ABC经旋转后能与△ADE重合,那么点
A
是旋转中心,旋转的最小度数为
45
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC和△ADE都是等腰直角三角形,CE与BD相交于点M,BD交AC于点N,
证明:(1)BD=CE;(2)BD⊥CE.

(3)当△ABC绕A点沿顺时针方向旋转如下图(1)(2)(3)位置时,上述结论是否成立?请选择其中的一个图加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC和△ADE都是等腰直角三角形,CE与BD相交于点M,BD交AC于点N.
证明:(1)BD=CE;(2)BD⊥CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

11、如图,△ABC和△ADE都是等腰直角三角形,其中∠ACB=90°,∠ADE=90°;若△ADE经过旋转后能与△ABC重合,则旋转中心是A,旋转的角度是
45
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连精英家教网接CE交AD于点F,连接BD交CE于点G,连接BE.下列结论中:
①CE=BD;        
②△ADC是等腰直角三角形;
③∠ADB=∠AEB;  
④CD•AE=EF•CG;
一定正确的结论有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交CE于点G,连接BE,下列结论中:
①CE=BD;            ②△ADC是等腰直角三角形;
③∠ADB=∠AEB;      ④CD•AE=EF•CG.
一定正确的结论是
①②③④
①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC和△ADE都是等腰直角三角形,AB=AC,AD=AE,∠BAC=∠DAE,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交 CE于点G,连接BE.下列结论中:①CE=BD;  ②△ADC是等腰三角形;
③∠CGD+∠DAE=180°;  ④CD•AE=EF•CG.一定正确的结论有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,连结CE交AD于点F,连结BD交CE于点G,连结BE.下列结论中,正确的结论有(  )
①CE=BD;②∠ADC是90°;③∠ADB=∠AEB;④SBCDE=
1
2
BD•CE;⑤BC2+DE2=BE2+CD2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连接CE交AD于点F,连结BD交CE于点G,连结BE,则图中与△ACE全等的三角形还有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交 CE于点G,连接BE.下列结论中:
①CE=BD;  ②△ADC是等腰直角三角形;③∠ADB=∠AEB;    ④CD=EF.
一定正确的结论有(  )

查看答案和解析>>


同步练习册答案