精英家教网 > 初中数学 > 题目详情
数轴上A、B两点离开原点的距离分别为2和3,则AB两点间的距离为(    )

A.1
B.2
C.5
D.1或5
相关习题

科目:初中数学 来源:同步题 题型:填空题

数轴上A、B两点离开原点的距离分别为2和3,则AB两点间的距离为(    )。

查看答案和解析>>

科目:初中数学 来源: 题型:

数轴上AB两点离开原点的距离分别为2和3,则AB两点间的距离为                    

查看答案和解析>>

科目:初中数学 来源: 题型:

数轴上AB两点离开原点的距离分别为2和3,则AB两点间的距离为                    

查看答案和解析>>

科目:初中数学 来源:江苏省无锡市天一实验学校2012届九年级一模数学试题 题型:044

在平面直角坐标系中,点B的坐标为(0,10),点P、Q同时从O点出发,在线段OB上做往返运动,点P往返一次需10 s,点Q往返一次需6 s.设动点P、Q运动的时间为x( s),动点离开原点的距离是y.

(1)当0≤x≤10时,在图①中,分别画出点P、点Q运动时关于x的函数图象,并回答:

①点P从O点出发,1个往返之间与点Q相遇几次(不包括O点)?

②点P从O点出发,几秒后与点Q第一次相遇?

(2)如图②,在平面直角坐标系中,OCDE的顶点C(6,0),D、E、B在同一直线上.分别过点P、Q作PM、QN垂直于y轴,P、Q为垂足.设运动过程中两条直线PM,QN与OCDE围成图形(阴影部分)的面积是S,试求当x(0≤x≤5)为多少秒时,S有最大值.最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的精英家教网顶点,O为坐标原点.若OA、OB(OA<OB)的长分别是方程x2-4x+3=0的两根,且∠DAB=45°.
(1)求抛物线对应的二次函数解析式;
(2)过点A作AC⊥AD交抛物线于点C,求点C的坐标;
(3)在(2)的条件下,过点A任作直线l交线段CD于点P,若点C、D到直线l的距离分别记为d1、d2,试求的d1+d2的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点.若OA、OB(OA<OB)的长分别是方程x2-4x+3=0的两根,且∠DAB=45°.
(1)求抛物线对应的二次函数解析式;
(2)过点A作AC⊥AD交抛物线于点C,求点C的坐标;
(3)在(2)的条件下,过点A任作直线l交线段CD于点P,若点C、D到直线l的距离分别记为d1、d2,试求的d1+d2的最大值.

查看答案和解析>>

科目:初中数学 来源:四川省中考真题 题型:解答题

如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点,若OA、OB(OA<OB)的长分别是方程x2-4x+3=0的两根,且∠DAB=45°。
(1)求抛物线对应的二次函数解析式;
(2)过点A作AC⊥AD交抛物线于点C,求点C的坐标;
(3)在(2)的条件下,过点A任作直线l交线段CD于点P,若点C、D到直线l的距离分别记为d1、d2,试求的d1+d2的最大值。

查看答案和解析>>

科目:初中数学 来源:第34章《二次函数》中考题集(35):34.4 二次函数的应用(解析版) 题型:解答题

如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点.若OA、OB(OA<OB)的长分别是方程x2-4x+3=0的两根,且∠DAB=45°.
(1)求抛物线对应的二次函数解析式;
(2)过点A作AC⊥AD交抛物线于点C,求点C的坐标;
(3)在(2)的条件下,过点A任作直线l交线段CD于点P,若点C、D到直线l的距离分别记为d1、d2,试求的d1+d2的最大值.

查看答案和解析>>

科目:初中数学 来源:第6章《二次函数》中考题集(34):6.4 二次函数的应用(解析版) 题型:解答题

如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点.若OA、OB(OA<OB)的长分别是方程x2-4x+3=0的两根,且∠DAB=45°.
(1)求抛物线对应的二次函数解析式;
(2)过点A作AC⊥AD交抛物线于点C,求点C的坐标;
(3)在(2)的条件下,过点A任作直线l交线段CD于点P,若点C、D到直线l的距离分别记为d1、d2,试求的d1+d2的最大值.

查看答案和解析>>

科目:初中数学 来源:第27章《二次函数》中考题集(33):27.3 实践与探索(解析版) 题型:解答题

如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点.若OA、OB(OA<OB)的长分别是方程x2-4x+3=0的两根,且∠DAB=45°.
(1)求抛物线对应的二次函数解析式;
(2)过点A作AC⊥AD交抛物线于点C,求点C的坐标;
(3)在(2)的条件下,过点A任作直线l交线段CD于点P,若点C、D到直线l的距离分别记为d1、d2,试求的d1+d2的最大值.

查看答案和解析>>


同步练习册答案