精英家教网 > 初中数学 > 题目详情
如图,△ABC内接于⊙O,连结OA、OB,若∠ABO=25°,则∠C的度数为


A.55°
B.60°
C.65°
D.70°
相关习题

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,连结OAOB∠ABO=25°,则∠C的度数为

A.55°      B.60°      C.65°    D.70°  

查看答案和解析>>

科目:初中数学 来源:山东省同步题 题型:单选题

如图,△ABC内接于⊙O,连结OA、OB,若∠ABO=25°,则∠C的度数为
[     ]
A.55°
B.60°
C.65°
D.70°

查看答案和解析>>

科目:初中数学 来源:2009年湖北省十堰市初中毕业生学业考试数学试题及答案 题型:013

如图,△ABC内接于⊙O,连结OA、OB,∠ABO=25°,则∠C的度数为

[  ]

A.55°

B.60°

C.65°

D.70°

查看答案和解析>>

科目:初中数学 来源: 题型:

小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:

(1)如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连接AE并延长交BC的延长线于点F,求证:S四边形ABCD=S△ABF(S表示面积)
(2)如图2:在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,请问当直线MN在什么位置时,△MON的面积最小,并说明理由.
(3)利用(2)的结论解决下列问题:
我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.(如图3)若O是△ABC的重心,连结AO并延长交BC于D,则
AO
AD
=
2
3
,这样面积比就有一些“漂亮”结论,利用这些性质解决以下问题.
若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图4),S四边形BCHG,S△AGH分别表示四边形BCHG和△AGH的面积,试探究
S四边形BCHG
S△AGH
的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读材料:如图1,△ABC的周长为l,面积为S,内切圆O的半径为r,探究r与S、l之间的关系.连接OA,OB,OC∵S=S△OAB+S△OBC+S△OCA
又∵S△OAB=
1
2
AB•r
S△OBC=
1
2
BC•r
S△OCA=
1
2
CA•r

S=
1
2
AB•r+
1
2
BC•r+
1
2
CA•r=
1
2
l•r

r=
2S
l

解决问题:
(1)利用探究的结论,计算边长分别为5,12,13的三角形内切圆半径;
(2)若四边形ABCD存在内切圆(与各边都相切的圆),如图2且面积为S,各边长分别为a,b,c,d,试推导四边形的内切圆半径公式;
(3)若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1,a2,a3,…,an,合理猜想其内切圆半径公式(不需说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读材料:如图1,△ABC的周长为l,面积为S,内切圆O的半径为r,探究r与S、l之间的关系.连接OA,OB,OC∵S=S△OAB+S△OBC+S△OCA
又∵数学公式数学公式数学公式
数学公式
数学公式
解决问题:
(1)利用探究的结论,计算边长分别为5,12,13的三角形内切圆半径;
(2)若四边形ABCD存在内切圆(与各边都相切的圆),如图2且面积为S,各边长分别为a,b,c,d,试推导四边形的内切圆半径公式;
(3)若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1,a2,a3,…,an,合理猜想其内切圆半径公式(不需说明理由).

查看答案和解析>>

科目:初中数学 来源:河北省模拟题 题型:解答题

阅读材料:如图1所示,△ABC的周长为l,面积为S,内切圆O的半径为r,探究r与S、l之间的关系,连接OA,OB,OC。
∵S=S△OAB+S△OBC+S△OCA
又∵


解决问题:
(1)利用探究的结论,计算边长分别为5,12,13的三角形内切圆半径;
(2)若四边形ABCD存在内切圆(与各边都相切的圆),如图2且面积为S,各边长分别为a,b,c,d,试推导四边形的内切圆半径公式;
(3)若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1,a2,a3,…,an,合理猜想其内切圆半径公式(不需说明理由)。

图1                                                  图2

查看答案和解析>>

科目:初中数学 来源:2010年河北省廊坊市安次区中考数学一模试卷(解析版) 题型:解答题

(2010•安次区一模)阅读材料:如图1,△ABC的周长为l,面积为S,内切圆O的半径为r,探究r与S、l之间的关系.连接OA,OB,OC∵S=S△OAB+S△OBC+S△OCA
又∵


解决问题:
(1)利用探究的结论,计算边长分别为5,12,13的三角形内切圆半径;
(2)若四边形ABCD存在内切圆(与各边都相切的圆),如图2且面积为S,各边长分别为a,b,c,d,试推导四边形的内切圆半径公式;
(3)若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1,a2,a3,…,an,合理猜想其内切圆半径公式(不需说明理由).

查看答案和解析>>


同步练习册答案