精英家教网 > 初中数学 > 题目详情
函数y=x2,当x=(    )时,函数的值等于2。

A.2
B.-2
C.±2
D.±4
相关习题

科目:初中数学 来源:同步题 题型:填空题

函数y=x2,当x=(    )时,函数的值等于2。

查看答案和解析>>

科目:初中数学 来源: 题型:

已知函数y=x2+bx+c(x≥0),满足当x=1时,y=-1,且当x=0与x=4时的函数值相等.
(1)求函数y=x2+bx+c(x≥0)的解析式并画出它的图象(不要求列表);
(2)若f(x)表示自变量x相对应的函数值,且f(x)=
x2+bx+c(x≥0)
-2(x<0)
又已知关于x的方程f(x)=x+k有三个不相等的实数根,请利用图象直接写出实数k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

11、已知二次函数y=x2-x+a(a>0),当自变量x取m时,其相应的函数值y<0,那么下列结论中正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=x2-x+a(a>0),当自变量x取p时的函数值小于0,那么当自变量x取p-1时的函数值(  )
A、小于0B、大于0C、等于0D、与0的大小关系不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

对于二次函数y=x2-2mx-3,有下列说法:
①它的图象与x轴有两个公共点;
②若当x≤1时y随x的增大而减小,则m=1;
③若将它的图象向左平移3个单位后过原点,则m=-1;
④若当x=4时的函数值与x=2时的函数值相等,则当x=6时的函数值为-3.
其中正确的说法是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=x2-2mx+m2-4的图象与x轴交于A、B两点(点A在点B的左边),且与y轴交于点D.
(1)当点D在y轴正半轴时,是否存在实数m,使得△BOD为等腰三角形?若存在,求出m的值;若不存在,请说明理由;
(2)当m=-1时,将函数y=x2-2mx+m2-4的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象Ω.当直线y=
12
x+b
与图象Ω有两个公共点时,求实数b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=x2-(m-2)x+m的图象经过(-1,15),
(1)求m的值;
(2)设此二次函数的图象与x轴的交点为A、B,图象上的点C使△ABC的面积等于1,求C点的坐标;
(3)当△ABC的面积大于3时,求点C横坐标的取值范围?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数y=x2-(m-2)x+m的图象经过(-1,15),
(1)求m的值;
(2)设此二次函数的图象与x轴的交点为A、B,图象上的点C使△ABC的面积等于1,求C点的坐标;
(3)当△ABC的面积大于3时,求点C横坐标的取值范围?

查看答案和解析>>

科目:初中数学 来源:北京中考真题 题型:解答题

已知二次函数y=(t+1)x2+2(t+2)x+,在x=0和x=2时的函数值相等。
(1)求二次函数解析式;
(2)若一次函数y=kx+6的图像与二次函数的图像都经过点A(-3,m),求m和k的值;
(3)设二次函数的图象与x轴交于点B,C(点C在点B,C的左侧),将二次函数的图象在点B,C间的部分(含点C和点C)向左平移n(n>0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+6向上平移n个单位。请结合图象回答:当平移后的直线与图象G有公共点时,n的取值范围。
 

查看答案和解析>>

科目:初中数学 来源: 题型:

巳知二次函数ya(x2-6x+8)(a>0)的图象与x轴分别交于点AB,与y轴交于点C.点D是抛物线的顶点.

(1)如图①.连接AC,将△OAC沿直线AC翻折,若点O的对应点0'恰好落在该抛物线的对称轴上,求实数a的值;
(2)如图②,在正方形EFGH中,点EF的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PAPBPCPD不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).“若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;
(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标l是大于3的常数,试问:是否存在一个正数a,使得四条线段PAPBPCPD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.

查看答案和解析>>


同步练习册答案