精英家教网 > 初中数学 > 题目详情
如图,若点P在∠AOB的平分线上,若应用角平分线的性质可得PA=PB,则必须添加的条件是(    )。


A.OA=OB
B.PA⊥OA于A
C.PB⊥OB于B
D.PA⊥OA于A,PB⊥OB于B
相关习题

科目:初中数学 来源:同步题 题型:填空题

如图,若点P在∠AOB的平分线上,若应用角平分线的性质可得PA=PB,则必须添加的条件是(    )。

查看答案和解析>>

科目:初中数学 来源:设计八年级上数学人教版 人教版 题型:022

如图,若点P在∠AOB的平分线上,若应用角平分线的性质可得PA=PB,则必须添加的条件是________.

查看答案和解析>>

科目:初中数学 来源:浙江省杭州市青春中学2012届九年级中考模拟数学试题 题型:044

如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的△AOB,△COD处,直角边OB,OD在x轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至△PEF处时,设PE.PF与OC分别交于点M,N,与x轴分别交于点G,H.

(1)求直线AC所对应的函数关系式;

(2)当点P是线段AC(端点除外)上的动点时,试探究:

①点M到x轴的距离h与线段BH的长是否总相等?请说明理由;

②两块纸板重叠部分(图中的阴影部分)的面积S是否存在最大值?若存在,求出这个最大值及S取最大值时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年江苏省连云港市初中毕业升学统一考试、数学试卷 题型:044

如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的△AOB,△COD处,直角边OB,OD在x轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至△PEF处时,设PE,PF与OC分别交于点M,N,与x轴分别交于点G,H.

(1)求直线AC所对应的函数关系式;

(2)当点P是线段AC(端点除外)上的动点时,试探究:

①点M到x轴的距离h与线段BH的长是否总相等?请说明理由;

②两块纸板重叠部分(图中的阴影部分)的面积S是否存在最大值?若存在,求出这个最大值及S取最大值时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:同步题 题型:填空题

如图所示,若点P在∠AOB的平分线上,若应用角平分线的性质可得PA=PB,则必须添加的条件是(    )。

查看答案和解析>>

科目:初中数学 来源: 题型:022

如图13-3-13,若点P在∠AOB的平分线上,若应用角平分线的性质可得PA=PB,则必须添加的条件是________.

    

图13-3-13        

  

查看答案和解析>>

科目:初中数学 来源: 题型:022

如图13-3-5,若点P在∠AOB的平分线上,若应用角平分线的性质可得PA=PB,则必须添加的条件是___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系xOy中,A(2
3
,2)
,B(4,0).将△OAB绕点O顺时针旋转a角(0°<a<90°)得到△OCD(O,A,B的对应点分别为O,C,D),将△OAB沿x轴负方精英家教网向平移m个单位得到△EFG(m>0,O,A,B的对应点分别为E,F,G),a,m的值恰使点C,D,F落在同一反比例函数y=
k
x
(k≠0)的图象上.
(1)∠AOB=
 
°,a=
 
°;
(2)求经过点A,B,F的抛物线的解析式;
(3)若(2)中抛物线的顶点为M,抛物线与直线EF的另一个交点为H,抛物线上的点P满足以P,M,F,A为顶点的四边形的面积与四边形MFAH的面积相等(点P不与点H重合),请直接写出满足条件的点P的个数,并求位于直线EF上方的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•团风县模拟)如图1,在平面直角坐标系xOy中,直线l:y=
3
4
x+m
与x轴、y轴分别交于点A和点B(0,-1),抛物线y=
1
2
x2+bx+c
经过点B,且与直线l的另一个交点为C(4,n).

(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

探究与应用:在学习几何时,我们可以通过分离和构造基本图形,将几何“模块”化.例如在相似三角形中,K字形是非常重要的基本图形,可以建立如下的“模块”(如图①):
(1)请就图①证明上述“模块”的合理性.已知:∠A=∠D=∠BCE=90°,求证:△ABC∽△DCE;
(2)请直接利用上述“模块”的结论解决下面两个问题:
①如图②,已知点A(-2,1),点B在直线y=-2x+3上运动,若∠AOB=90°,求此时点B的坐标;
②如图③,过点A(-2,1)作x轴与y轴的平行线,交直线y=-2x+3于点C、D,求点A关于直线CD的对称点E的坐标.

查看答案和解析>>


同步练习册答案