精英家教网 > 初中数学 > 题目详情
等边三角形每边上的中线、角平分线、高重合且相等

A.正确
B.错误
相关习题

科目:初中数学 来源:同步题 题型:填空题

等边三角形每边上的中线、角平分线、高(    )且(    )。

查看答案和解析>>

科目:初中数学 来源: 题型:022

等边三角形每边上的中线、角平分线、高________且________.

查看答案和解析>>

科目:初中数学 来源: 题型:

等边三角形的性质
(1)等边三角形的三个内角都
相等
相等
,并且每一个角都等于
60°
60°

(2)等边三角形是轴对称图形,共有
条对称轴.
(3)等边三角形每边上的
中线
中线
高线
高线
和该边所对内角的平分线互相重合.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=-数学公式x2+数学公式x+4经过A、B两点.
(1)写出点A、点B的坐标;
(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA和抛物线于点E、M和点P,连接PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;
(3)在(2)的条件下,抛物线上是否存在一点P,使得△PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年山东省泰安市中考数学模拟试卷(八)(解析版) 题型:解答题

如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=-x2+x+4经过A、B两点.
(1)写出点A、点B的坐标;
(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA和抛物线于点E、M和点P,连接PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;
(3)在(2)的条件下,抛物线上是否存在一点P,使得△PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年浙江省杭州市锦绣?育才教育集团中考数学一模试卷(解析版) 题型:解答题

如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=-x2+x+4经过A、B两点.
(1)写出点A、点B的坐标;
(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA和抛物线于点E、M和点P,连接PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;
(3)在(2)的条件下,抛物线上是否存在一点P,使得△PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年广西河池市中考数学试卷(解析版) 题型:解答题

如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=-x2+x+4经过A、B两点.
(1)写出点A、点B的坐标;
(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA和抛物线于点E、M和点P,连接PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;
(3)在(2)的条件下,抛物线上是否存在一点P,使得△PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•天津)“三等分任意角”是数学史上一个著名问题.已知一个角∠MAN,设∠α=
13
∠MAN.
(Ⅰ)当∠MAN=69°时,∠α的大小为
23
23
(度);
(Ⅱ)如图,将∠MAN放置在每个小正方形的边长为1cm的网格中,角的一边AM与水平方向的网格线平行,另一边AN经过格点B,且AB=2.5cm.现要求只能使用带刻度的直尺,请你在图中作出∠α,并简要说明做法(不要求证明)
如图,让直尺有刻度一边过点A,设该边与过点B的竖直方向的网格线交于点C,与过点B水平方向的网格线交于点D,保持直尺有刻度的一边过点A,调整点C、D的位置,使CD=5cm,画射线AD,此时∠MAD即为所求的∠α.
如图,让直尺有刻度一边过点A,设该边与过点B的竖直方向的网格线交于点C,与过点B水平方向的网格线交于点D,保持直尺有刻度的一边过点A,调整点C、D的位置,使CD=5cm,画射线AD,此时∠MAD即为所求的∠α.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河池)如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=-
1
2
x2+
7
2
x+4经过A、B两点.
(1)写出点A、点B的坐标;
(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA和抛物线于点E、M和点P,连接PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;
(3)在(2)的条件下,抛物线上是否存在一点P,使得△PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(浙江宁波卷)数学(解析版) 题型:解答题

若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.

(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;

(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;

(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.

 

查看答案和解析>>


同步练习册答案