精英家教网 > 初中数学 > 题目详情
已知a、b、c是△ABC三边长,外接圆的圆心在△ABC一条边上的是

A.a=15,b=12,c=1
B.a=5,b=12,c=12
C.a=5,b=12,c=13
D.a=5,b=12,c=14
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,以△ABC的顶点A为圆心,r为半径的圆与边BC交于D、E两点,且AC2=CE•CB.
(1)求证:r2=BD•CE;
(2)设以BD、CE为两直角边的直角三角形的外接圆的面积为S,若BD、CE的长是关于x的方程x2-mx+3m-5=0的两个实数根,求S=
π2
时的r的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:a、b、c分别是△ABC的∠A、∠B、∠C的对边(a>b).二次函数y=(x-2a)x-2b(x-a)+c2的图象的顶点在x轴上,且sinA、sinB是关于x的方程(m+5)x2-(2m-5)x+m-8=0的两个根.
(1)判断△ABC的形状,关说明理由;
(2)求m的值;
(3)若这个三角形的外接圆面积为25π,求△ABC的内接正方形(四个顶点都在三角形三边上)的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,以△ABC的顶点A为圆心,r为半径的圆与边BC交于D、E两点,且AC2=CE•CB.
(1)求证:r2=BD•CE;
(2)设以BD、CE为两直角边的直角三角形的外接圆的面积为S,若BD、CE的长是关于x的方程x2-mx+3m-5=0的两个实数根,求S=数学公式时的r的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图⊙O是以等腰三角形ABC的底边BC为直径的外接圆,BD平分∠ABC交⊙O于D,且BD与OA、
AC分别交于点E、F延长BA、CD交于G.
(1)试证明:BF=CG.
(2)线段CD与BF有什么数量关系?为什么?
(3)试比较线段CD与BE的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:1997年江苏省南京市中考数学试卷(解析版) 题型:解答题

已知:a、b、c分别是△ABC的∠A、∠B、∠C的对边(a>b).二次函数y=(x-2a)x-2b(x-a)+c2的图象的顶点在x轴上,且sinA、sinB是关于x的方程(m+5)x2-(2m-5)x+m-8=0的两个根.
(1)判断△ABC的形状,关说明理由;
(2)求m的值;
(3)若这个三角形的外接圆面积为25π,求△ABC的内接正方形(四个顶点都在三角形三边上)的边长.

查看答案和解析>>

科目:初中数学 来源:2001年江苏省无锡市中考数学试卷(解析版) 题型:解答题

已知:如图,以△ABC的顶点A为圆心,r为半径的圆与边BC交于D、E两点,且AC2=CE•CB.
(1)求证:r2=BD•CE;
(2)设以BD、CE为两直角边的直角三角形的外接圆的面积为S,若BD、CE的长是关于x的方程x2-mx+3m-5=0的两个实数根,求S=时的r的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:a、b、c分别是△ABC的∠A、∠B、∠C的对边(a>b).二次函数y=(x-2a)x-2b(x-a)+c2的图象的顶点在x轴上,且sinA、sinB是关于x的方程(m+5)x2-(2m-5)x+m-8=0的两个根.
(1)判断△ABC的形状,关说明理由;
(2)求m的值;
(3)若这个三角形的外接圆面积为25π,求△ABC的内接正方形(四个顶点都在三角形三边上)的边长.

查看答案和解析>>

科目:初中数学 来源:同步题 题型:单选题

已知a、b、c是△ABC三边长,外接圆的圆心在△ABC一条边上的是
[     ]
A.a=15,b=12,c=1
B.a=5,b=12,c=12
C.a=5,b=12,c=13
D.a=5,b=12,c=14

查看答案和解析>>

科目:初中数学 来源: 题型:

附加题:
已知:如图⊙O是以等腰三角形ABC的底边BC为直径的外接圆,BD平分∠ABC交⊙O于D,且BD与OA、精英家教网AC分别交于点E、F延长BA、CD交于G.
(1)试证明:BF=CG.
(2)线段CD与BF有什么数量关系?为什么?
(3)试比较线段CD与BE的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年黑龙江省双鸭山市中考数学试卷(解析版) 题型:解答题

附加题:
已知:如图⊙O是以等腰三角形ABC的底边BC为直径的外接圆,BD平分∠ABC交⊙O于D,且BD与OA、AC分别交于点E、F延长BA、CD交于G.
(1)试证明:BF=CG.
(2)线段CD与BF有什么数量关系?为什么?
(3)试比较线段CD与BE的大小关系,并说明理由.

查看答案和解析>>


同步练习册答案