精英家教网 > 初中数学 > 题目详情
如下图,直角梯形AD∥BC中,AD⊥AB,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,
连AE、CE,则△ADE的面积是


A.1
B.2
C.3
D.不能确定
相关习题

科目:初中数学 来源:湖北省月考题 题型:单选题

如下图,直角梯形AD∥BC中,AD⊥AB,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是
[     ]
A.1
B.2
C.3
D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角梯形ABCD中,AD∥BC,∠A=∠B=90°,E是AB的中点,连接DE、CE,AD+BC=CD,以精英家教网下结论:
(1)∠CED=90°;
(2)DE平分∠ADC;
(3)以AB为直径的圆与CD相切;
(4)以CD为直径的圆与AB相切;
(5)△CDE的面积等于梯形ABCD面积的一半.
其中正确结论的个数为(  )
A、2个B、3个C、4个D、5个

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直角梯形ABCD中,AB⊥BC,AD∥BC,点E是AB的中点,且AD+BC=DC、下列结论中:①△ADE∽△BEC;②DE2=DA•DC;③若设AD=a,CD=b,BC=c,则关于x的方程ax2+bx+c=0有两个不相等的实数根;④若设AD=a,AB=b,BC=c,则关于x的方程ax2+bx+c=0有两个相等的实数根.其中正确的结论有(  )个.
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直角梯形ABCD置于平面直角坐标系中,BC与x轴重合,点A在y轴上,且AD∥BC,AD=CD,若sin∠ABO=数学公式,梯形ABCD的面积为60.
(1)求直线AB的解析式;
(2)若点P从点A出发,沿AB向终点B运动,运动速度为每秒3个单位长度,过点P作AB的垂线交x轴于点E交y轴于点F,设点P的运动时间为t秒,线段EF长为y,求y与t的函数关系式(直接写出自变量t的取值范围);
(3)在(2)的条件下,连接DE、DF,当cos∠EDF=数学公式时,求t的值.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(山东淄博卷)数学(解析版) 题型:选择题

如图,直角梯形ABCD中,AB∥CD,∠C=90°,∠BDA=90°,AB=a,BD=b,CD=c,BC=d,AD=e,则下列等式成立的是

A. b2=ac       B.b2=ce       C.be=ac       D.bd=ae

 

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,直角梯形ABCD中,AB∥CD,∠C=90°,∠BDA=90°,AB=a,BD=b,CD=c,BC=d,AD=e,则下列等式成立的是

A.b2=ac B.b2=ce C.be=ac D.bd=ae

查看答案和解析>>

科目:初中数学 来源:第2章《一元二次方程》好题集(08):2.3 公式法(解析版) 题型:选择题

如图,直角梯形ABCD中,AB⊥BC,AD∥BC,点E是AB的中点,且AD+BC=DC、下列结论中:①△ADE∽△BEC;②DE2=DA•DC;③若设AD=a,CD=b,BC=c,则关于x的方程ax2+bx+c=0有两个不相等的实数根;④若设AD=a,AB=b,BC=c,则关于x的方程ax2+bx+c=0有两个相等的实数根.其中正确的结论有( )个.

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源:第19章《相似形》好题集(22):19.6 相似三角形的性质(解析版) 题型:选择题

如图,直角梯形ABCD中,AB⊥BC,AD∥BC,点E是AB的中点,且AD+BC=DC、下列结论中:①△ADE∽△BEC;②DE2=DA•DC;③若设AD=a,CD=b,BC=c,则关于x的方程ax2+bx+c=0有两个不相等的实数根;④若设AD=a,AB=b,BC=c,则关于x的方程ax2+bx+c=0有两个相等的实数根.其中正确的结论有( )个.

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源:第29章《相似形》好题集(18):29.5 相似三角形的性质(解析版) 题型:选择题

如图,直角梯形ABCD中,AB⊥BC,AD∥BC,点E是AB的中点,且AD+BC=DC、下列结论中:①△ADE∽△BEC;②DE2=DA•DC;③若设AD=a,CD=b,BC=c,则关于x的方程ax2+bx+c=0有两个不相等的实数根;④若设AD=a,AB=b,BC=c,则关于x的方程ax2+bx+c=0有两个相等的实数根.其中正确的结论有( )个.

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源:第3章《图形的相似》好题集(17):3.3 相似三角形的性质和判定(解析版) 题型:选择题

如图,直角梯形ABCD中,AB⊥BC,AD∥BC,点E是AB的中点,且AD+BC=DC、下列结论中:①△ADE∽△BEC;②DE2=DA•DC;③若设AD=a,CD=b,BC=c,则关于x的方程ax2+bx+c=0有两个不相等的实数根;④若设AD=a,AB=b,BC=c,则关于x的方程ax2+bx+c=0有两个相等的实数根.其中正确的结论有( )个.

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>


同步练习册答案