精英家教网 > 初中数学 > 题目详情
已知:如图,B、C是线段AD上两点,且AB∶BC∶CD=2∶4∶3,M是AD的中点,CD=6㎝,线段MC=(    )cm


A.3
B.6
C.9
D.12
相关习题

科目:初中数学 来源:中考数学专项练习 题型:044

已知:如图,O是线段AB上一点,以OB为半径的⊙O交线段AB于点C,以线段AO为直径的半圆交⊙O于点D,过点B作AB的垂线与AD的延长线交于点E,连结CD,若AC=2,且AC、AD的长是关于x的方程-kx+=0的两个根.

(1)证明:AE切⊙O于点D;

(2)求线段EB的长;

(3)求tan∠ADC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在平面直角坐标系中,点A、B分别在x轴、y轴上,线段OA、OB的长(OA<OB)是方程x2-18x+72=0的两个根,点C是线段AB的中点,点D在线段OC上,且OD=2CD.
(1)求点C的坐标;
(2)求直线AD的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,直线y=x-15与x轴、y轴分别相交于点A和点B.抛物线数学公式经过A、B两点.
(1)求这个抛物线的解析式;
(2)若这抛物线的顶点为点D,与x轴的另一个交点为点C.对称轴与x轴交于点H,求△DAC的面积;
(3)若点E是线段AD的中点.CE与DH交于点G,点P在y轴的正半轴上,△POH是否能够与△CGH相似?如果能,请求出点P的坐标;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在平面直角坐标系中,点A、B分别在x轴、y轴上,线段OA、OB的长(OA<OB)是方程x2-18x+72=0的两个根,点C是线段AB的中点,点D在线段OC上,且OD=2CD.
(1)求点C的坐标;
(2)求直线AD的解析式.

查看答案和解析>>

科目:初中数学 来源:2012年上海市闸北区中考数学一模试卷(解析版) 题型:解答题

已知:如图,直线y=x-15与x轴、y轴分别相交于点A和点B.抛物线经过A、B两点.
(1)求这个抛物线的解析式;
(2)若这抛物线的顶点为点D,与x轴的另一个交点为点C.对称轴与x轴交于点H,求△DAC的面积;
(3)若点E是线段AD的中点.CE与DH交于点G,点P在y轴的正半轴上,△POH是否能够与△CGH相似?如果能,请求出点P的坐标;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:月考题 题型:解答题

已知:如图,B、C是线段AD上两点,且AB∶BC∶CD=2∶4∶3,M是AD的中点,CD=6㎝,求线段MC的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.
(1)求证:BE=CD;
(2)求证:△AMN是等腰三角形;
(3)在图①的基础上,将△ADE绕点A按顺时针方向旋转,使D点落在线段AB上,其他条件不变,得到图②所示的图形.(1)、(2)中的两个结论是否仍然成立吗?请你直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.
(1)求证:BE=CD;
(2)求证:△AMN是等腰三角形;
(3)在图①的基础上,将△ADE绕点A按顺时针方向旋转,使D点落在线段AB上,其他条件不变,得到图②所示的图形.(1)、(2)中的两个结论是否仍然成立吗?请你直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,AD为Rt△ABC斜边BC上的高,点E为DA延长线上一点,连接BE,过点C作CF⊥BE于点F,交AB、AD于M、N两点.
(1)若线段AM、AN的长是关于x的一元二次方程x2-2mx+n2-mn+
5
4
m2=0的两个实数根,求证:AM=AN;
(2)若AN=
15
8
,DN=
9
8
,求DE的长;
(3)若在(1)的条件下,S△AMN:S△ABE=9:64,且线段BF与EF的长是关于y的一元二次方程5y2-16ky+10k2+5=0的两个实数根,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在四边形ABCD中,已知△ABC、△BCD、△ACD的面积之比是3:1:4,点E在边AD上,CE交BD于G,设
BG
GD
=
DE
EA
=k

(1)求
37k2+20
的值;
(2)若点H分线段BE成
BH
HE
=2
的两段,且AH2+BH2+DH2=p2,试用含p的代数式表示△ABD三边长的平方和.

查看答案和解析>>


同步练习册答案