如图所示,小明将一矩形纸片ABCD沿CE折叠,B点恰好落在AD边上,设此点为F,若AB∶BC=4∶5,则 cos∠DCF的值为( )。 |
A. B. C. D. |
科目:初中数学 来源:中华题王 数学 八年级上 (人教版) 人教版 题型:022
如图所示,小明将一张矩形纸片ABCD沿CE折叠,B点恰好落在AD边上,设此点为F,若AB∶BC=4∶5,则DC∶CF=________.
科目:初中数学 来源: 题型:解答题
科目:初中数学 来源:2012年江苏省常州市二十四中中考数学模拟试卷(C)(解析版) 题型:解答题
科目:初中数学 来源:2012年北京市丰台区中考数学一模试卷(解析版) 题型:解答题
科目:初中数学 来源: 题型:
将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼成一个等腰三
角形(不能有重叠和缝隙).
小明的做法是:如图1所示,在矩形ABCD中,分别取AD、AB、CD的中点P、E、
F,并沿直线PE 、PF剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2).
(1)在图3中画出另一种剪拼成等腰三角形的示意图;
(2)以矩形ABCD的顶点B为原点,BC所在直线为x轴建立平面直角坐标系(如图4),
矩形ABCD剪拼后得到等腰三角形△PMN,点P在边AD上(不与点A、D重合),点M、N在x轴上(点M在N的左边).如果点D的坐标为(5,8),直线PM的解析式为,则所有满足条件的k的值为 .
科目:初中数学 来源: 题型:
8 |
5 |
4 |
3 |
8 |
5 |
4 |
3 |
科目:初中数学 来源:2012届浙江省椒江区九年级二模数学试卷(带解析) 题型:解答题
【小题1】情境观察 将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是 ,∠CAC′= °.
【小题2】问题探究 如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q. 试探究EP与FQ之间的数量关系,并证明你的结论.
【小题3】拓展延伸 如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H. 若AB=" k" AE,AC=" k" AF,试探究HE与HF之间的数量关系,并说明理由
科目:初中数学 来源:2012年浙江省衢州市中考数学试卷 题型:044
课本中,把长与宽之比为的矩形纸片称为标准纸.请思考解决下列问题:
(1)将一张标准纸ABCD(AB<BC)对开,如图(1)所示,所得的矩形纸片ABEF是标准纸.请给予证明.
(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(AB<BC)进行如下操作:
第一步:沿过A点的直线折叠,使B点落在AD边上点F处,折痕为AE(如图(2)甲);
第二步:沿过D点的直线折叠,使C点落在AD边上点N处,折痕为DG(如图(2)乙),此时E点恰好落在AE边上的点M处;
第三步:沿直线DM折叠(如图(2)丙),此时点G恰好与N点重合.
请你探究:矩形纸片ABCD是否是一张标准纸?请说明理由.
(3)不难发现:将一张标准纸按如图(3)一次又一次对开后,所得的矩形纸片都是标准纸.现有一张标准纸ABCD,AB=1,BC=,问第5次对开后所得标准纸的周长是多少?探索直接写出第2012次对开后所得标准纸的周长.
科目:初中数学 来源:2013-2014学年江苏无锡市九年级第一学期期中考试数学试卷(解析版) 题型:解答题
课本中把长与宽之比为的矩形纸片称为标准纸.请解决下列问题:
(1)将一张标准纸ABCD(AB<BC)对开,如图1所示,所得的矩形纸片ABEF是标准纸.请给予证明;
(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(AB<BC)进行如下操作:
第一步:沿过A点的直线折叠,使B点落在AD边上点F处,折痕为AE(如图2甲);
第二步:沿过D点的直线折叠,使C点落在AD边上点N处,折痕为DG(如图2乙) .此时E点恰好落在AE边上的点M处;
第三步:沿直线DM折叠(如图2丙),此时点G恰好与N点重合.
请你研究,矩形纸片ABCD是否是一张标准纸?请说明理由.
(3)不难发现,将一张标准纸如图3一次又一次对开后,所得的矩形纸片都是标准纸.现有一张标准纸ABCD,AB=1,BC=,问第5次对开后所得标准纸的周长是多少?探索并直接写出第2002次对开后所得标准纸的周长.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com