精英家教网 > 初中数学 > 题目详情
若(2,0)、(4,0)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是直线

A、x=0
B、x=1
C、x=2
D、x=3
相关习题

科目:初中数学 来源: 题型:

抛物线y=ax2+bx+c(a<0)交x轴于点A(-1,0)、B(3,0),交y轴精英家教网于点C,顶点为D,以BD为直径的⊙M恰好过点C.
(1)求顶点D的坐标(用a的代数式表示);
(2)求抛物线的解析式;
(3)抛物线上是否存在点P使△PBD为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,-3),
(1)求二次函数y=ax2+bx+c的解析式;
(2)在抛物线对称轴上是否存在一点P,使点P到B、C两点距离之差最大?若存在,求出P点坐标;若不存在,请说明理由;
(3)平行于x轴的一条直线交抛物线于M、N两点,若以MN为直径的圆恰好与x轴相切,求此圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

抛物线y=ax2+bx+c(a>0)的顶点为B(-1,m)(m≠0),并且经过点A(-3,0).
(1)求此抛物线的解析式(系数和常数项用含m的代数式表示);
(2)若由点A、原点O与抛物线上的一点P所构成的三角形是等腰直角三角形,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

抛物线的解析式y=ax2+bx+c满足如下四个条件:abc=0;a+b+c=3;ab+bc+ca=-3;a<b<c
(1)求这条抛物线的解析式;
(2)设该抛物线与x轴的两个交点分别为A、B(A在B的左边),与y轴的交点为C.
①在第一象限内,这条抛物线上有一点P,AP交y轴于点D,当OD=1.5时,试比较S△APC与S△AOC的大小.
②在x轴的上方,这条抛物线上是否存在点Pn,使得S△APnC=S△AOC?若存在,请求出点Pn的坐标;若不存在,请说明理由.
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

抛物线y=ax2+bx-2经过A(4,0),B(1,0)两点,C点是抛物线与y轴的交点.
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点.
(1)求抛物线的解析式;
(2)如图1,设抛物线y=ax2+bx+3的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移后抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的取值范围;
(3)如图2,将抛物线y=ax2+bx+3平移,平移后抛物线与x轴交于点E、F,与y轴交于点N,当E(-1,0)、F(5,0)时,在抛物线上是否存在点G,使△GFN中FN边上的高为7
2
?若存在,求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

抛物线y=ax2+bx+c(a>0)的顶点为B(-1,m)(m≠0),并且经过点A(-3,0).
(1)求此抛物线的解析式(系数和常数项用含m的代数式表示);
(2)若由点A、原点O与抛物线上的一点P所构成的三角形是等腰直角三角形,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点.
(1)求抛物线的解析式;
(2)如图1,设抛物线y=ax2+bx+3的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移后抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的取值范围;
(3)如图2,将抛物线y=ax2+bx+3平移,平移后抛物线与x轴交于点E、F,与y轴交于点N,当E(-1,0)、F(5,0)时,在抛物线上是否存在点G,使△GFN中FN边上的高为数学公式?若存在,求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

抛物线y=ax2+bx+3经过点A、B、C,已知A(-1,0),B(3,0).
(1)求抛物线的解析式;
(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;
(3)如图2,在(2)的条件下,延长DP交x轴于点F,M(m,0)是x轴上一动点,N是线段DF上一点,当△BDC的面积最大时,若∠MNC=90°,请直接写出实数m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

抛物线的解析式y=ax2+bx+c满足如下四个条件:abc=0;a+b+c=3;ab+bc+ca=-3;a<b<c
(1)求这条抛物线的解析式;
(2)设该抛物线与x轴的两个交点分别为A、B(A在B的左边),与y轴的交点为C.
①在第一象限内,这条抛物线上有一点P,AP交y轴于点D,当OD=1.5时,试比较S△APC与S△AOC的大小.
②在x轴的上方,这条抛物线上是否存在点Pn,使得S△APnC=S△AOC?若存在,请求出点Pn的坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案